Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
CHENG Peng, ZHONG Tuhua, CHEN Hong. Research progress of plant fiber self-bonding molding environmentally friendly materials[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3897-3909. doi: 10.13801/j.cnki.fhclxb.20240412.001
Citation: CHENG Peng, ZHONG Tuhua, CHEN Hong. Research progress of plant fiber self-bonding molding environmentally friendly materials[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3897-3909. doi: 10.13801/j.cnki.fhclxb.20240412.001

Research progress of plant fiber self-bonding molding environmentally friendly materials

doi: 10.13801/j.cnki.fhclxb.20240412.001
Funds:  National Key Research & Development Program of China (2022YFD2200901); Fundamental Research Funds of the International Centre for Bamboo and Rattan (1632022025)
  • Received Date: 2024-02-05
  • Accepted Date: 2024-03-30
  • Rev Recd Date: 2024-03-18
  • Available Online: 2024-04-15
  • Publish Date: 2024-08-01
  • Plant fiber, as a biobased material in nature, the development and applications of green and environmentally friendly materials and applications have attracted much attention. Plant-based micro and nanofibers have excellent characteristics such as high specific surface area, high strength, high modulus, and so on. It has great potential to replace some non-biodegradable plastic materials and products by using it to construct green and environmentally friendly structural materials. In this review article, the research progress of plant fiber self-bonding molding environmentally friendly materials is summarized and presented. The preparation process and performance of plant micro-fiber molding materials, plant nanocellulose structural materials and plant micro and nanofiber structural materials are mainly discussed. The key research directions of plant fiber self-bonding molding environmentally friendly materials in the future are prospected in order to promote the development and application and of plant fiber in structural materials and provide some reference.

     

  • loading
  • [1]
    孙文潇, 杨帆, 侯梦宗, 等. 环境中的微塑料污染及降解[J]. 中国塑料, 2023, 37(11): 117-126.

    SUN Wenxiao, YANG Fan, HOU Mengzong, et al. Microplastic pollution and degradation in environment[J]. China Plastics, 2023, 37(11): 117-126(in Chinese).
    [2]
    ROCHMAN C M, BROWNE M A, HALPERN B S, et al. Classify plastic waste as hazardous[J]. Nature, 2013, 494(7436): 169-171. doi: 10.1038/494169a
    [3]
    LITHNER D, LARSSON A, DAVE G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment, 2011, 409(18): 3309-3324. doi: 10.1016/j.scitotenv.2011.04.038
    [4]
    OLIVEIRA J, BELCHIOR A, DA SILVA V D, et al. Marine environmental plastic pollution: Mitigation by microorganism degradation and recycling valorization[J]. Frontiers in Marine Science, 2020, 7: 567126. doi: 10.3389/fmars.2020.567126
    [5]
    RAMESH M, PALANIKUMAR K, REDDY K H. Plant fibre based bio-composites: Sustainable and renewable green materials[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 558-584. doi: 10.1016/j.rser.2017.05.094
    [6]
    刘雅奇, 刘运浩, 李普旺, 等. 几种热带植物纤维在复合材料领域的研究进展[J]. 化工新型材料, 2022, 50(3): 39-44.

    LIU Yaqi, LIU Yunhao, LI Puwang, et al. Research progress on several tropical plant fibers composites[J]. New Chemical Materials, 2022, 50(3): 39-44(in Chinese).
    [7]
    韩少杰. 中密度纤维板生产工艺纵横谈[J]. 中国人造板, 2007(7): 22-25, 30. doi: 10.3969/j.issn.1673-5064.2007.07.007

    HAN Shaojie. The production technology of MDF[J]. China Wood-Based Panels, 2007(7): 22-25, 30(in Chinese). doi: 10.3969/j.issn.1673-5064.2007.07.007
    [8]
    韩少杰. 中密度纤维板生产工艺纵横谈(续)[J]. 中国人造板, 2007(8): 17-20. doi: 10.3969/j.issn.1673-5064.2007.08.005

    HAN Shaojie. The production technology of MDF (Continued)[J]. China Wood-Based Panels, 2007(8): 17-20 (in Chinese). doi: 10.3969/j.issn.1673-5064.2007.08.005
    [9]
    黄伟琨, 潘仲年. 我国中密度纤维板生产及应用进展[J]. 林业机械与木工设备, 2014, 42(3): 8-10. doi: 10.3969/j.issn.2095-2953.2014.03.002

    HUANG Weikun, PAN Zhongnian. Production and application progress of medium density fiberboard (MDF) in China[J]. Forestry Machinery & Woodworking Equipment, 2014, 42(3): 8-10(in Chinese). doi: 10.3969/j.issn.2095-2953.2014.03.002
    [10]
    张洋. 纤维板制造学[M]. 北京: 中国林业出版社, 2012: 99-101.

    ZHANG Yang. Fiberboard manufacturing[M]. Beijing: China Forestry Publishing House, 2012: 99-101(in Chinese).
    [11]
    ZHANG D, ZHANG A, XUE L. A review of preparation of binderless fiberboards and its self-bonding mechanism[J]. Wood Science and Technology, 2015, 49: 661-679. doi: 10.1007/s00226-015-0728-6
    [12]
    SHI J J, XU X, ZHONG T H, et al. Fabrication and application of eco-friendly bamboo self-bonded composites for furniture[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(20): 7833-7843.
    [13]
    SHI J J, ZHONG T H, XU X, et al. Eco-friendly and special-shaped bamboo binderless fiberboards fabricated by self-bonding technology: Effect of bamboo fibers with different sizes[J]. Industrial Crops and Products, 2023, 194: 116300.
    [14]
    CHEN H, SHI J J, ZHONG T H, et al. Tunable physical-mechanical properties of eco-friendly and sustainable processing bamboo self-bonding composites by adjusting parenchyma cell content[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(28): 10333-10343.
    [15]
    LUO H, YUE L, WANG N, et al. Manufacture of binderless fiberboard made from bamboo processing residues by steam explosion pretreatment[J]. Wood Research, 2014, 59(5): 861-870.
    [16]
    LUO P, YANG C M. Binderless particleboard from steam exploded wheat straw[J]. Advanced Materials Research, 2011, 179: 807-811.
    [17]
    AHMAD Z, TAJUDDIN M, SALIM N F F, et al. Effect of alkaline treatment on properties of rattan waste and fabricated binderless particleboard[J]. IIUM Engineering Journal, 2018, 19(1): 185-196. doi: 10.31436/iiumej.v19i1.879
    [18]
    GUAN Q F, HAN Z M, YANG H B, et al. Regenerated isotropic wood[J]. National Science Review, 2021, 8(7): 137-145.
    [19]
    ZHANG Y, GAN T, LUO Y, et al. A green and efficient method for preparing acetylated cassava stillage residue and the production of all-plant fibre composites[J]. Composites Science and Technology, 2014, 102: 139-144. doi: 10.1016/j.compscitech.2014.07.028
    [20]
    NASIR M, GUPTA A, BEG M D H, et al. Fabricating eco-friendly binderless fiberboard from laccase-treated rubber wood fiber[J]. BioResources, 2013, 8(3): 3599-3608.
    [21]
    李茂钒. 杂色云芝处理荻竹制备中密度纤维板研究[D]. 武汉: 华中科技大学, 2014.

    LI Maofan. Study on middle density fiberboard production of Triarhena by Coriolus versicolor[D]. Wuhan: Huazhong University of Science and Technology, 2014(in Chinese).
    [22]
    ANGLÈS M N, FERRANDO F, FARRIOL, et al. Suitability of steam exploded residual softwood for the production of binderless panels: Effect of the pre-treatment severity and lignin addition[J]. Biomass and Bioenergy, 2001, 21(3): 211-224. doi: 10.1016/S0961-9534(01)00031-9
    [23]
    THENG D, EL MANSOURI N E, ARBAT PUJOLRÀS G, et al. Fiberboards made from corn stalk thermomechanical pulp and kraft lignin as a green adhesive[J]. Bioresources, 2017, 12(2): 2379-2393.
    [24]
    GUAN Q F, YANG H B, HAN Z M, et al. Plant cellulose nanofiber-derived structural material with high-density reversible interaction networks for plastic substitute[J]. Nano Letters, 2021, 21(21): 8999-9004. doi: 10.1021/acs.nanolett.1c02315
    [25]
    GUAN Q F, YANG H B, HAN Z M, et al. An all-natural bioinspired structural material for plastic replacement[J]. Nature Communications, 2020, 11(1): 5401. doi: 10.1038/s41467-020-19174-1
    [26]
    LI D H, HAN Z M, HE Q, et al. Ultrastrong, thermally stable, and food-safe seaweed-based structural material for tableware[J]. Advanced Materials, 2023, 35(1): 2208098. doi: 10.1002/adma.202208098
    [27]
    YANG H B, LIU Z X, CHEN H, et al. An all-natural fire-resistant bioinspired cellulose-based structural material by external force-induced assembly[J]. Materials Today Nano, 2023, 23: 100342. doi: 10.1016/j.mtnano.2023.100342
    [28]
    YUE X, YANG H B, HAN Z M, et al. Tough and moldable sustainable cellulose-based structural materials via multiscale interface engineering[J]. Advanced Materials, 2024, 36(7): 2306451.
    [29]
    DONG X, SONG R, WANG P, et al. Multiscale engineered waste wood particles toward a sustainable, scalable, and high-performance structural material[J]. Advanced Functional Materials, 2024, 34(9): 2308361.
    [30]
    DIOP C I K, TAJVIDI M, BILODEAU M A, et al. Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: Example of fiberboard[J]. Cellulose, 2017, 24: 3037-3050. doi: 10.1007/s10570-017-1320-z
    [31]
    KOJIMA Y, MINAMINO J, ISA A, et al. Binding effect of cellulose nanofibers in wood flour board[J]. Journal of Wood Science, 2013, 59: 396-401. doi: 10.1007/s10086-013-1348-0
    [32]
    KOJIMA Y, ISA A, KOBORI H, et al. Evaluation of binding effects in wood flour board containing ligno-cellulose nanofibers[J]. Materials, 2014, 7(9): 6853-6864. doi: 10.3390/ma7096853
    [33]
    KOJIMA Y, ISHINO A, KOBORI H, et al. Reinforcement of wood flour board containing ligno-cellulose nanofiber made from recycled wood[J]. Journal of Wood Science, 2015, 61(5): 492-499. doi: 10.1007/s10086-015-1493-8
    [34]
    祝其丽, 何明雄, 谭芙蓉, 等. 木质纤维素生物质预处理研究现状[J]. 生物技术进展, 2015, 5(6): 414-419. doi: 10.3969/j.issn.2095-2341.2015.06.02

    ZHU Qili, HE Mingxiong, TAN Furong, et al. Progress on pretreatment technologies of lignocellulosic biomass[J]. Current Biotechnology, 2015, 5(6): 414-419(in Chinese). doi: 10.3969/j.issn.2095-2341.2015.06.02
    [35]
    NASIR M, KHALI D P, JAWAID M, et al. Recent development in binderless fiber-board fabrication from agricultural residues: A review[J]. Construction and Building Materials, 2019, 211: 502-516. doi: 10.1016/j.conbuildmat.2019.03.279
    [36]
    贾丽萍, 姚秀清, 杨磊, 等. 木质纤维素的预处理技术进展[J]. 纤维素科学与技术, 2022, 30(2): 72-80.

    JIA Liping, YAO Xiuqing, YANG Lei, et al. Advances in pretreatment technology of lignocellulose[J]. Journal of Cellulose Science and Technology, 2022, 30(2): 72-80(in Chinese).
    [37]
    曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495.

    CAO Yunqi, XIE Xianli, GUO Zhenqiang, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495(in Chinese).
    [38]
    刘忠, 王慧梅, 惠岚峰. 木质纤维原料蒸汽爆破预处理技术与应用现状[J]. 天津科技大学学报, 2021, 36(2): 1-7.

    LIU Zhong, WANG Huimei, HUI Lanfeng. The steam explosion technology of lignocellulose and application status[J]. Journal of Tianjin University of Science & Technology, 2021, 36(2): 1-7(in Chinese).
    [39]
    LIU Z H, QIN L, JIN M J, et al. Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment[J]. Bioresource Technology, 2013, 132: 5-15. doi: 10.1016/j.biortech.2013.01.016
    [40]
    ZHAO W J, ZHANG J, ZHANG W F, et al. Effect of bamboo unit morphology on the preparation of bamboo fibers by steam explosion[J]. Industrial Crops and Products, 2023, 202: 117066. doi: 10.1016/j.indcrop.2023.117066
    [41]
    LI J J, LIAN C P, WU J Y, et al. Morphology, chemical composition and thermal stability of bamboo parenchyma cells and fibers isolated by different methods[J]. Cellulose, 2023, 30(4): 2007-2021. doi: 10.1007/s10570-022-05030-6
    [42]
    朱建伟, 龚德鸿, 茅佳华, 等. 木质纤维生物质预处理技术研究进展[J]. 新能源进展, 2022, 10(4): 383-392. doi: 10.3969/j.issn.2095-560X.2022.04.012

    ZHU Jianwei, GONG Dehong, MAO Jiahua, et al. Research progress of lignocellulosic biomass pretreatment technology[J]. Advances in New and Renewable Energy, 2022, 10(4): 383-392(in Chinese). doi: 10.3969/j.issn.2095-560X.2022.04.012
    [43]
    亓伟, 王闻, 王琼, 等. 木质纤维素预处理技术及其机理研究进展[J]. 新能源进展, 2013, 1(2): 150-158. doi: 10.3969/j.issn.2095-560X.2013.02.005

    QI Wei, WANG Wen, WANG Qiong, et al. Review on the pretreatment method and mechanism of lignocellulose[J]. Advances in New and Renewable Energy, 2013, 1(2): 150-158(in Chinese). doi: 10.3969/j.issn.2095-560X.2013.02.005
    [44]
    HALVARSSON S, EDLUND H, NORGREN M. Manufacture of non-resin wheat straw fibreboards[J]. Industrial Crops and Products, 2009, 29(2-3): 437-445. doi: 10.1016/j.indcrop.2008.08.007
    [45]
    YUAN Z, WEN Y, KAPU N S. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment[J]. Bioresource Technology, 2018, 247: 242-249. doi: 10.1016/j.biortech.2017.09.080
    [46]
    ARSLAN C, JAVED M, SATTAR A, et al. Optimizing the effect of chemical pretreatment on lignocellulosic properties of wheat straw[J]. Journal of Wastes and Biomass Management, 2020, 2(2): 28-32.
    [47]
    LU X, ZHANG M Q, RONG M Z, et al. Self-reinforced melt processable composites of sisal[J]. Composites Science and Technology, 2003, 63(2): 177-186. doi: 10.1016/S0266-3538(02)00204-X
    [48]
    赵文萱, 焦宏官, 郑亚强. 预处理及木质素酶对玉米秸秆酶解糖化效果影响[J]. 吉林农业大学学报, 2022, 44(5): 548-556.

    ZHAO Wenxuan, JIAO Hongguan, ZHENG Yaqiang. Effects of pretreatment and ligninase on enzymatic hydrolysis and saccharification of corn stalk[J]. Journal of Jilin Agricultural University, 2022, 44(5): 548-556(in Chinese).
    [49]
    MALHERBE S, CLOETE T E. Lignocellulose biodegradation: Fundamentals and applications[J]. Reviews in Environmental Science and Biotechnology, 2002, 1(2): 105-114. doi: 10.1023/A:1020858910646
    [50]
    王营超, 田中建, 吉兴香, 等. 木质纤维原料的生物酶预处理理论与技术研究进展[J]. 中国造纸学报, 2022, 37(4): 92-98.

    WANG Yingchao, TIAN Zhongjian, JI Xingxiang, et al. Research progress on theory and technology of bio-enzyme pretreatment for lignocellulosic materials[J]. Transactions of China Pulp and Paper, 2022, 37(4): 92-98(in Chinese).
    [51]
    SHARMA A, AGGARWAL N K. Water hyacinth: A potential lignocellulosic biomass for bioethanol [M]. Cham: Springer, 2020: 51-72.
    [52]
    ZHANG M Q, RONG M Z, LU X. Fully biodegradable natural fiber composites from renewable resources: All-plant fiber composites[J]. Composites Science and Technology, 2005, 65(15-16): 2514-2525. doi: 10.1016/j.compscitech.2005.06.018
    [53]
    姜波, 金永灿. 基于木质素分子结构特性的功能材料研究进展[J]. 复合材料学报, 2022, 39(7): 3059-3083.

    JIANG Bo, JIN Yongcan. Research progress of lignin functional materials based on its structural properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3059-3083(in Chinese).
    [54]
    MARTINEZ L M T, KHARISSOVA O V, KHARISOV B I. Handbook of ecomaterials [M]. Cham: Springer, 2019: 1395-1409.
    [55]
    LAMAMING J, SULAIMAN O, SUGIMOTO T, et al. Influence of chemical components of oil palm on properties of binderless particleboard[J]. BioResources, 2013, 8(3): 3358-3371.
    [56]
    RAY U, ZHU S, PANG Z, et al. Mechanics design in cellulose-enabled high-performance functional materials[J]. Advanced Materials, 2021, 33(28): 2002504. doi: 10.1002/adma.202002504
    [57]
    宋戎妆, 侯远震, 何泽洲, 等. 纳米纤维素序构材料界面力学行为和设计的研究进展[J]. 中国科学技术大学学报, 2021, 51(10): 766-786.

    SONG Rongzhuang, HOU Yuanzhen, HE Zezhou, et al. Research progress of interfacial mechanical behavior and design of nanocellulose-based sequentially architected materials[J]. Journal of University of Science and Technology of China, 2021, 51(10): 766-786(in Chinese).
    [58]
    TAYEB A H, AMINI E, GHASEMI S, et al. Cellulose nanomaterials—Binding properties and applications: A review[J]. Molecules, 2018, 23(10): 2684. doi: 10.3390/molecules23102684
    [59]
    DIOP C I K, TAJVIDI M, BILODEAU M A, et al. Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards[J]. Industrial Crops and Products, 2017, 109: 27-36. doi: 10.1016/j.indcrop.2017.08.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (364) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return