Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
WANG Jiangtao, CHEN Shuai, SHEN Cheng, et al. Progress of wave-absorbing materials/structures and wave absorbing-load bearing multifunctional structures[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3866-3882. doi: 10.13801/j.cnki.fhclxb.20240407.005
Citation: WANG Jiangtao, CHEN Shuai, SHEN Cheng, et al. Progress of wave-absorbing materials/structures and wave absorbing-load bearing multifunctional structures[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3866-3882. doi: 10.13801/j.cnki.fhclxb.20240407.005

Progress of wave-absorbing materials/structures and wave absorbing-load bearing multifunctional structures

doi: 10.13801/j.cnki.fhclxb.20240407.005
Funds:  National Natural Science Foundation of China (12202188; 12032010; 12302472); National High-Level Talent Fund (YQR23023)
  • Received Date: 2024-01-22
  • Accepted Date: 2024-03-26
  • Rev Recd Date: 2024-03-02
  • Available Online: 2024-04-08
  • Publish Date: 2024-08-01
  • With the rapid advancement of modern science and technology, the widespread adoption of electronic information devices has significantly enhanced the quality of human life. However, security issues such as electromagnetic interference and leakage are arose with this progress. These issues become particularly pronounced in the field of national defense and military technology, where the improvement and upgrading of radar testing technologies pose substantial threats to the survivability of weaponry systems. Consequently, there is an urgent need to develop high-performance electromagnetic absorption materials to suppress electromagnetic interference and radiation, thereby preventing information leakage. This article takes the application of absorption materials and absorption structures as its starting point, systematically organizing the electromagnetic wave loss mechanism of various absorption materials. Simultaneously, it explores the primary means of application for absorption structures. Building upon this foundation, the current state and future trends of research on absorption materials and structures are elucidated. Furthermore, a comprehensive analysis of the advantages and shortcomings inherent in current research and development is undertaken, culminating in the identification of key scientific issues that the field of absorption must address in the future. In response to the current inadequacies in the integration of absorption materials and structural functionality, pivotal recommendations regarding future research directions are proposed. The methods discussed and strategies put forth herein are poised to provide valuable guidance for innovative designs in the realm of absorption-bearing structures in the future.

     

  • loading
  • [1]
    LI S, HUANG H, WU S, et al. Study on microwave absorption performance enhancement of metamaterial/honeycomb sandwich composites in the low frequency band[J]. Polymers, 2022, 14(7): 1424. doi: 10.3390/polym14071424
    [2]
    DAI B, MA Y, DONG F, et al. Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 704-754. doi: 10.1007/s42114-022-00510-6
    [3]
    纪正江, 董佳晨, 梁良, 等. 面向飞机蒙皮的碳纤维预浸料吸波承载一体化层合结构设计[J/OL]. 复合材料学报, 1-10[2024-07-19].

    JI Zhengjiang, DONG Jiachen, LIANG Liang, et al. Design of carbon fiber prepreg wave-absorbing and carrying integrated laminated structures for aircraft skins[J/OL]. Acta Materiae Compositae Sinica, 1-10[2024-07-19](in Chinese).
    [4]
    樊益泽, 刘亚青, 苏晓岗, 等. 基于超材料的微波吸收复合材料研究进展[J]. 化工新型材料, 2022, 50(3): 236-245.

    FAN Yize, LIU Yaqing, SU Xiaogang, et al. Advances in microwave absorbing composites based on metamaterials[J]. New Chemical Materials, 2022, 50(3): 236-245(in Chinese).
    [5]
    LUO F, LIU D, CAO T, et al. Study on broadband microwave absorbing performance of gradient porous structure[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 591-601. doi: 10.1007/s42114-021-00275-4
    [6]
    WANG R, LIU W, ZHOU X, et al. Electromagnetic wave-absorption and bending properties of double-layer honeycomb 3D woven composites: Experiment and simulation[J]. Journal of the Textile Institute, 2023, 11: 2206085.
    [7]
    YANG S, ZHU Z, ZHOU W, et al. Composite structure design of a broadband metamaterial absorber based on magnetic composites[J]. Journal of Magnetism and Magnetic Materials, 2022, 564: 170123. doi: 10.1016/j.jmmm.2022.170123
    [8]
    张明伟, 曲冠达, 庞梦瑶, 等. 电磁屏蔽机制及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021(35): 62-70.

    ZAHNG Mingwei, QU Guanda, PANG Mengyao, et al. Electromagnetic shielding mechanism and research progress of coated/structured wave-absorbing composites[J]. Materials Reports, 2021(35): 62-70(in Chinese).
    [9]
    吴海华, 刘力, 蔡宇, 等. 磁/电介质复合材料结构型吸波体制备及吸波性能[J]. 材料热处理学报, 2020, 41(5): 35-40.

    WU Haihua, LIU Li, CAI Yu, et al. Preparation and wave-absorbing properties of structural wave-absorbing systems made of magnetic/dielectric composites[J]. Journal of Heat Treatment of Materials, 2020, 41(5): 35-40(in Chinese).
    [10]
    LIAO Q, HE M, ZHOU Y, et al. Highly cuboid-shaped heterobimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 29136-29144.
    [11]
    LIU J, ZHANG L, WU H. Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: Review and perspective[J]. Journal of Physics D-Applied Physics, 2021, 54(20): 203001. doi: 10.1088/1361-6463/abe26d
    [12]
    WANG B, WU Q, FU Y, et al. A review on carbon/magnetic metal composites for microwave absorption[J]. Journal of Materials Science & Technology, 2021, 86: 91-109.
    [13]
    YANG X, DUAN Y, LI S, et al. Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance[J]. Carbon, 2022, 188: 376-384. doi: 10.1016/j.carbon.2021.12.044
    [14]
    HAN Y, HE M, HU J, et al. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band[J]. Nano Research, 2023, 16(1): 1773-1778. doi: 10.1007/s12274-022-5111-y
    [15]
    ZHANG Z, TAN J, GU W, et al. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application[J]. Chemical Engineering Journal, 2020, 395: 125190. doi: 10.1016/j.cej.2020.125190
    [16]
    QU B, ZHU C, LI C, et al. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3730-3735.
    [17]
    WANG J, WANG B, WANG Z, et al. Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties[J]. Journal of Colloid and Interface Science, 2021, 586: 479-490. doi: 10.1016/j.jcis.2020.10.111
    [18]
    SHU J C, HUANG X Y, CAO M S. Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption[J]. Carbon, 2021, 174: 638-646. doi: 10.1016/j.carbon.2020.11.087
    [19]
    XIANG Z, SONG Y, XIONG J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks[J]. Carbon, 2019, 142: 20-31. doi: 10.1016/j.carbon.2018.10.014
    [20]
    YANG G, YUAN G, ZHANG J, et al. Porous electromagnetic wave absorbing materials[J]. Progress in Chemistry, 2023, 35(3): 445-457.
    [21]
    BAI Y H, XIE B, LI H, et al. Mechanical properties and electromagnetic absorption characteristics of foam cement-based absorbing materials[J]. Construction and Building Materials, 2022, 330: 127221. doi: 10.1016/j.conbuildmat.2022.127221
    [22]
    PANG H, DUAN Y, DAI X, et al. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption[J]. Journal of Materials Science & Technology, 2021, 88: 203-214.
    [23]
    HUANG Y, YUAN X, CHEN M, et al. Ultrathin flexible carbon fiber reinforced hierarchical metastructure for broadband microwave absorption with nano lossy composite and multiscale optimization[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44731-44740.
    [24]
    JIAO Z, HUYAN W, YANG F, et al. Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure[J]. Nano-Micro Letters, 2022, 14(11): 7308042.
    [25]
    HU P, DONG S, YUAN F, et al. Hollow carbon microspheres modified with NiCo2S4 nanosheets as a high-performance microwave absorber[J]. Advanced Composites and Hybrid Materials, 2022, 5(1): 469-480. doi: 10.1007/s42114-021-00318-w
    [26]
    王彩霞, 刘元军. 磁损耗型吸波材料的发展现状[J]. 研究与技术, 2021, 58(2): 27-32.

    WANG Caixia, LIU Yuanjun. Development status of magnetic loss-type wave-absorbing materials[J]. Research and Technology, 2021, 58(2): 27-32(in Chinese).
    [27]
    LI Q, ZHAO X, ZHANG Z, et al. Architecture design and interface engineering of self-assembly VS4/rGO heterostructures for ultrathin absorbent[J]. Nano-Micro Letters, 2022, 14(1): 67. doi: 10.1007/s40820-022-00809-5
    [28]
    QIN M, ZHANG L, WU H, et al. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science, 2022, 9(10): 2105553. doi: 10.1002/advs.202105553
    [29]
    YANG Y, SONG C, PEI R, et al. Design, characterization and fabrication of a flexible broadband metamaterial absorber based on textile[J]. Additive Manufacturing, 2023, 69: 103537. doi: 10.1016/j.addma.2023.103537
    [30]
    WEN G, ZHAO X, LIU Y, et al. Simple, controllable fabrication and electromagnetic wave absorption properties of hollow Ni nanosphere[J]. Journal of Materials Science-Materials in Electronics, 2019, 30(3): 2166-2176. doi: 10.1007/s10854-018-0488-9
    [31]
    TIAN X K, XU X L, BO G X, et al. A 3D flower-like Fe3O4@PPy composite with core-shell heterostructure as a lightweight and efficient microwave absorbent[J]. Journal of Alloys and Compounds, 2022, 923: 166416. doi: 10.1016/j.jallcom.2022.166416
    [32]
    SUN X, SHENG L M, FANG Y H, et al. Microwave absorption properties of single-walled carbon nanotubes-CoFe2O4 double-layer composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1279-1287.
    [33]
    LU J L, ZHANG X Q, LIU D D, et al. Review of dielectric carbide, oxide, and sulfide nanostructures for electromagnetic wave absorption[J]. ACS Applied Nano Materials, 2023, 6(17): 15347-15366. doi: 10.1021/acsanm.3c02857
    [34]
    WANG Y, LUO F, ZHOU W, et al. Dielectric and microwave absorption properties of TiC-Al2O3/silica coatings at high temperature[J]. Journal of Electronic Materials, 2017, 46(8): 5225-5231. doi: 10.1007/s11664-017-5530-9
    [35]
    MA J, QUAN B, LIU W, et al. Application of unit polarization strategy to achieve high-performance electromagnetic absorption by designing ternary SiO2@TiO2-C composite[J]. Journal of Alloys and Compounds, 2017, 709: 796-801. doi: 10.1016/j.jallcom.2017.03.187
    [36]
    ZHU B, TIAN Y, WANG Y, et al. Construction of Ni-loaded ceramic composites for efficient microwave absorption[J]. Applied Surface Science, 2021, 538: 148018. doi: 10.1016/j.apsusc.2020.148018
    [37]
    GUO X, FENG Y, LIN X, et al. The dielectric and microwave absorption properties of polymer-derived SiCN ceramics[J]. Journal of the European Ceramic Society, 2018, 38(4): 1327-1333. doi: 10.1016/j.jeurceramsoc.2017.10.031
    [38]
    MAHMOODI M, ASLIBEIKI B, PEYMANFAR R, et al. Oleaster seed-derived activated carbon/ferrite nanocomposite for microwave absorption in the X-band range[J]. Frontiers in Materials, 2022, 9: 1088196. doi: 10.3389/fmats.2022.1088196
    [39]
    SUN C, CHENG C F, SUN M, et al. Facile synthesis and microwave absorbing properties of LiFeO2/ZnFe2O4 composite[J]. Journal of Magnetism and Magnetic Materials, 2019, 482: 79-83. doi: 10.1016/j.jmmm.2019.03.034
    [40]
    LEI Y M, YAO Z J, LIN H Y, et al. Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/polyaniline composites[J]. Materials Letters, 2019, 236: 456-459. doi: 10.1016/j.matlet.2018.10.158
    [41]
    WU Y, WANG N, LIU X, et al. Effect of the metasurface on the electromagnetic wave absorption performance of cementitious materials[J]. Materials Letters, 2022, 329: 133185. doi: 10.1016/j.matlet.2022.133185
    [42]
    WU T, HUAN X, JIA X, et al. 3D printing nanocomposites with enhanced mechanical property and excellent electromagnetic wave absorption capability via the introduction of ZIF-derivative modified carbon fibers[J]. Composites Part B: Engineering, 2022, 233: 109658. doi: 10.1002/advs.202101988
    [43]
    YANG J, WANG J, LI H, et al. MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption [J]. Advanced Science, 2022, 9(7): 2101988.
    [44]
    班国东, 刘朝辉, 叶圣天, 等. 新型涂覆型雷达吸波材料的研究进展[J]. 表面技术, 2016, 45(6): 140-144.

    BAN Guodong, LIU Chaohui, YE Shengtian, et al. Research progress of novel coated radar wave absorbing materials[J]. Surface Technology, 2016, 45(6): 140-144(in Chinese).
    [45]
    ZHAO S, MA H, SHAO T, et al. Thermally stable ultra-thin and refractory microwave absorbing coating[J]. Ceramics International, 2021, 47(12): 17337-17344. doi: 10.1016/j.ceramint.2021.03.047
    [46]
    PANG L, WANG J, CHEN S A, et al. Multiple dielectric behavior of Cf-SiCNFs/Si3N4 ceramic composite at high temperatures[J]. Ceramics International, 2021, 47(3): 4127-4134. doi: 10.1016/j.ceramint.2020.09.289
    [47]
    LONG X Y, HE L F, YE W. In situ formation of Fe3O4/La2O3 coating on the surface of carbonaceous nonwoven to improve it electromagnetic wave absorption property[J]. Journal of Eletronic Materials, 2020, 49(11): 6611-6621. doi: 10.1007/s11664-020-08437-8
    [48]
    LI R, QING Y, LI W, et al. The electromagnetic absorbing properties of plasma-sprayed TiC/Al2O3 coatings under oblique incident microwave irradiation[J]. Ceramics International, 2021, 47(16): 22864-22868. doi: 10.1016/j.ceramint.2021.04.306
    [49]
    ZHANG H, XIE A, WANG C, et al. Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption[J]. Journal of Materials Chemistry A, 2013, 1(30): 8547-8552. doi: 10.1039/c3ta11278k
    [50]
    JIANG F, WEI X, ZHENG J, et al. Synthesis and electromagnetic characteristics of MnFe2O4/TiO2 composite material[J]. Materials Research Express, 2022, 9(10): 106101. doi: 10.1088/2053-1591/ac97de
    [51]
    MA C, MA W, WANG T, et al. An MXene coating with electromagnetic wave absorbing performance[J]. Inorganic Chemistry Communications, 2023, 151: 110565. doi: 10.1016/j.inoche.2023.110565
    [52]
    LIU Y, QI X M, DENG X Y, et al. Snake scale-inspired poly(vinylidene fluoride)/Ti3CNTx@polypyrrole coatings for ultrawide-bandwidth microwave and visible light absorption[J]. ACS Applied Materials & Interfaces, 2023, 15(23): 28491-28502.
    [53]
    WANG X K, SHI Z W, XU B S, et al. Study of wave-absorbing coating failure by electrochemical measurements[J]. Journal of Materials Engineering and Performance, 2019, 28(11): 7086-7096. doi: 10.1007/s11665-019-04433-0
    [54]
    HUANG Y Y, WU J. Preparation and characterization of graphene oxide/polyaniline/carbonyl iron nanocomposites[J]. Materials, 2022, 15(2): 484. doi: 10.3390/ma15020484
    [55]
    王翊, 郭顺德, 刘元军, 等. 铁磁材料/石墨烯复合吸波涂层织物的研究进展[J]. 材料导报, 2021, 35(17): 17178-17184.

    WANG Yi, GUO Shunde, LIU Yuanjun, et al. Research progress on ferromagnetic materials/graphene composite absorbing coating fabrics[J]. Materials Review, 2021, 35(17): 17178-17184(in Chinese).
    [56]
    郭飞, 杜红亮, 曲绍波, 等. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备[J]. 物理学报, 2015, 64(7): 077801-077806. doi: 10.7498/aps.64.077801

    GUO Fei, DU Hongliang, QU Shaobo, et al. The design and preparation of the broadband super material inhalation body based on magnetic/electronics hybrid substrate[J]. Acta Physica Sinica, 2015, 64(7): 077801-077806(in Chinese). doi: 10.7498/aps.64.077801
    [57]
    吕通, 张辰威, 刘甲, 等. 吸波超材料研究进展[J]. 复合材料学报, 2021, 38(1): 25-35.

    LYU Tong, ZHANG Chenwei, LIU Jia, et al. Research advances in absorbing materials for electromagnetic waves[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 25-35(in Chinese).
    [58]
    王彦朝, 许河秀, 王朝辉, 等. 电磁超材料吸波体的研究进展[J]. 物理学报, 2020, 69(13): 134101-134113. doi: 10.7498/aps.69.20200355

    WANG Yanzhao, XU Hexiu, WANG Chaohui, et al. Research advances in electromagnetic wave absorbing materials[J]. Acta Physica Sinica, 2020, 69(13): 134101-134113(in Chinese). doi: 10.7498/aps.69.20200355
    [59]
    LYU T, ZHANG C, LIU J, et al. Research progress in metamaterial absorber[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 25-35.
    [60]
    EUN S W, CHOI W H, JANG H K, et al. Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures[J]. Composites Science and Technology, 2015, 116: 18-25. doi: 10.1016/j.compscitech.2015.04.001
    [61]
    OLSZEWSKA-PLACHA M, SALSKI B, JANCZAK D, et al. A broadband absorber with a resistive pattern made of ink with graphene nano-platelets[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(2): 565-572. doi: 10.1109/TAP.2014.2379932
    [62]
    ZHANG C, CHENG Q, YANG J, et al. Broadband metamaterial for optical transparency and microwave absorption[J]. Applied Physics Letters, 2017, 110(14): 044110.
    [63]
    SONG W L, ZHOU Z, WANG LC, et al. Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 43179-43187.
    [64]
    CHEN X, CHEN X W, GU P F, et al. Ultra-wideband stealth antenna system based on multilayer wave-absorbing structure[C]. International Applied Computational Electromagnetics Society Symposium. 2022: 1-3. 10.1109/ACES-China56081.2022.10065076.
    [65]
    LI W, ZHAO L, DAI Z, et al. A temperature-activated nanocomposite metamaterial absorber with a wide tunability[J]. Nano Research, 2018, 11(7): 3931-3942. doi: 10.1007/s12274-018-1973-4
    [66]
    YANG S, LIU P, YANG M, et al. From flexible and stretchable meta-atom to metamaterial: A wearable microwave meta-skin with tunable frequency selective and cloaking effects[J]. Scientific Reports, 2016, 6: 21921. doi: 10.1038/srep21921
    [67]
    WANG B X, WANG L L, WANG G Z, et al. Frequency continuous tunable terahertz metamaterial absorber[J]. Journal of Lightwave Technology, 2014, 32(6): 1183-1189. doi: 10.1109/JLT.2014.2300094
    [68]
    KWON H, JANG M S, YUN J M, et al. Design and verification of simultaneously self-sensing and microwave-absorbing composite structures based on embedded SiC fiber network[J]. Composite Structures, 2021, 261: 113286. doi: 10.1016/j.compstruct.2020.113286
    [69]
    DU B, CAI M, WANG X, et al. Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites[J]. Journal of Advanced Ceramics, 2021, 10(4): 832-842. doi: 10.1007/s40145-021-0476-z
    [70]
    YANG P, LIU Y, ZHAO X, et al. Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders[J]. Advanced Powder Technology, 2016, 27(4): 1128-1133. doi: 10.1016/j.apt.2016.03.023
    [71]
    CHENG L, SI Y, JI Z, et al. A novel linear gradient carbon fiber array integrated square honeycomb structure with electromagnetic wave absorption and enhanced mechanical performances[J]. Composite Structures, 2023, 305: 116510. doi: 10.1016/j.compstruct.2022.116510
    [72]
    MARRA F, LECINI J, TAMBURRANO A, et al. Electromagnetic wave absorption and structural properties of wide-band absorber made of graphene-printed glass-fibre composite[J]. Scientific Reports, 2018, 8: 12029. doi: 10.1038/s41598-018-30498-3
    [73]
    LAI W, WANG Y, HE J, et al. Effects of carbonyl iron powder (CIP) content on the electromagnetic wave absorption and mechanical properties of CIP/ABS composites[J]. Polymers, 2020, 12(8): 1694. doi: 10.3390/polym12081694
    [74]
    AN Q, LI D, LIAO W, et al. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures[J]. Advanced Materials, 2023, 35(26): 659.
    [75]
    LIU Z, ZHANG R, WANG S, et al. Design and fabrication of an all-composite ultra-broadband absorbing structure with superior load-bearing capacity[J]. Composites Science and Technology, 2023, 240: 110094. doi: 10.1016/j.compscitech.2023.110094
    [76]
    LIU Z, WANG S, SHAO J, et al. 3D radar stealth composite hierarchical grid structure with extremely broadband absorption performance and effective load bearing[J]. Composites Part B: Engineering, 2022, 247: 110316. doi: 10.1016/j.compositesb.2022.110316
    [77]
    KWAK B S, CHOI W H, NOH Y H, et al. Nickel-coated glass/epoxy honeycomb sandwich composite for broadband RCS reduction[J]. Composites Part B: Engineering, 2020, 191: 107952. doi: 10.1016/j.compositesb.2020.107952
    [78]
    CHA J H, JANG W H, NOH J E, et al. A space stealth and cosmic radiation shielding composite: Polydopamine-coating and multi-walled carbon nanotube grafting onto an ultra-high-molecular-weight polyethylene/hydrogen-rich benzoxazine composite[J]. Composites Science and Technology, 2022, 230: 109711. doi: 10.1016/j.compscitech.2022.109711
    [79]
    FAN W, YUAN L, D'SOUZA N, et al. Enhanced mechanical and radar absorbing properties of carbon/glass fiber hybrid composites with unique 3D orthogonal structure[J]. Polymer Testing, 2018, 69: 71-79. doi: 10.1016/j.polymertesting.2018.05.007
    [80]
    CHENG L, SI Y, JI Z, et al. A novel linear gradient carbon fiber array integrated square honeycomb structure with electromagnetic wave absorption and enhanced mechanical performances [J]. Composite Structures, 2023, 305: 116510.
    [81]
    XIAO W, PENG G, ZHANG H, et al. Constructing a two-layer oblique honeycomb sandwich structure by LCD 3D printing for efficient electromagnetic wave absorbing[J]. Composite Structures, 2023, 305: 116449. doi: 10.1016/j.compstruct.2022.116449
    [82]
    ZHOU Q, YIN X, YE F, et al. A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption[J]. Materials & Design, 2017, 123: 46-53.
    [83]
    LI W, WU T, WANG W, et al. Broadband patterned magnetic microwave absorber[J]. Journal of Applied Physics, 2014, 116(4): 044110. doi: 10.1063/1.4891475
    [84]
    WANG C, LEI H, HUANG Y, et al. Effects of stitch on mechanical and microwave absorption properties of radar absorbing structure[J]. Composite Structures, 2018, 195: 297-307. doi: 10.1016/j.compstruct.2018.04.077
    [85]
    WANG C, CHEN M, LEI H, et al. Radar stealth and mechanical properties of a broadband radar absorbing structure[J]. Composites Part B: Engineering, 2017, 123: 19-27. doi: 10.1016/j.compositesb.2017.05.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (879) PDF downloads(237) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return