Citation: | DENG Xiaoxing, ZHU Zixu, CHEN Changhai, et al. Research status of quasi-static stability performance of composite sandwich structures[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5701-5723. DOI: 10.13801/j.cnki.fhclxb.20240325.003 |
Composite sandwich structures are widely used in aerospace, shipbuilding and other fields due to their excellent strength- and stiffness-to-weight ratio and small apparent density. From the three aspects of theoretical research, simulation analysis and experimental research, this paper summarizes the current situation of quasi-static stability research of honeycomb, foam, lattice and foldcore sandwich structures. The research on honeycomb sandwich structure is relatively mature, and further research should focus on the application field. The foam sandwich structure needs to be strengthened in the panel/core interface, and the fiber stitching technology can be considered. The theory of foldcore sandwich structure needs further study and has great potential. The lattice sandwich structure has stronger anti-buckling ability than other structures, but there is still a problem of face/core bonding. The problem of the quasi-static stability of the composite sandwich structure is mainly focused on the bonding of the face/core. The fiber stitching technology can effectively enhance the performance of the face/core. The research in this area has a strong potential for enhancing the stability of the composite sandwich structure.
Composite sandwich structures are a type of construction that utilizes composite materials as face sheets and lightweight materials as the core layer, forming a sandwich structure. Due to their advantages of being lightweight and high-strength, they are widely applied in various fields such as aerospace, aviation, and shipbuilding. With the application of composite sandwich structures in pressure-resistant structures, the study of their stability has become increasingly important. Researching the quasi-static stability of composite sandwich structures is of significant importance for the design technology of these structures and for expanding the application range of the materials. Therefore, this article reviews and summarizes the current research status on the quasi-static overall stability and panel stability under in-plane loads and axial compressive loads for four typical sandwich structures: honeycomb core structures, foam core structures, lattice core structures, and corrugated core structures. It also analyzes the characteristics and advantages of each typical structure, aiming to provide a reference for future related research.
The article begins by illustrating the four typical sandwich structures and briefly discussing their current application status. The core review is divided into three parts: theoretical research, simulation analysis, and experimental research. Theoretical research starts from general to specific, initially providing an overview and analysis of three general laminated plate theory models. It then proceeds to review and summarize the theoretical models of the four special sandwich structures. Simulation analysis directly starts with the four special sandwich structures, discussing the simulation models for each, the details of the methods used, the strengths and weaknesses of the models, and concludes with a summary and generalization at the end of the section. Experimental research, similar to simulation analysis, discusses the experimental studies related to the four typical sandwich structures. The article focuses on reviewing the objectives and methods of the experiments, the characteristics of the structures, and so on.
From the perspectives of theoretical research, simulation analysis, and experimental research, the following observations can be made:1. The maturity of laminated plate theory research makes the use of homogenization and equivalent methods a mainstream direction in theoretical research. The progress of theoretical research on various cores varies, especially in the areas of stitching techniques for foam core structures and theoretical research on corrugated core structures, which require further exploration.2. Due to the complex failure mechanisms of composite materials, it is challenging to establish accurate numerical prediction models for numerical simulation, and internal defects are difficult to simulate. However, under the premise of validating methods, repeated simulation experiments can be conducted at a low cost. Therefore, using numerical simulation to replace some experiments can effectively improve efficiency and save costs.3. In terms of experimental results, honeycomb cores exhibit strong resistance to out-of-plane compressive loads, with failure modes characterized by local buckling of the core walls. When subjected to in-plane compressive loads, they are prone to overall buckling instability. Foam cores have a significant advantage in bending resistance at equal density. Lattice core structures have a clear boundary between instability and collapse under compression loads, which is conducive to advancing research on stability. Corrugated core structures show a clear advantage in resisting local buckling and have a high degree of design flexibility, offering greater potential in terms of bending stiffness.Conclusions: This article provides a comprehensive review of the theoretical research, simulation analysis, and experimental studies on the static stability of four typical sandwich structures. Given the outstanding designability of composite sandwich structures, their future prospects in stability design applications are promising, especially in the design and application of corrugated core structures, which warrant further research and exploration. The development of fiber stitching technology has offered a feasible solution to the weak interface issues between the face and core of composite sandwich structures. In addition, the diversification of structures, the broadness of application prospects, the innovation in manufacturing processes, and the automation in production will all be hot topics for future research.
[1] |
朱子旭, 朱锡, 李永清, 等. 复合材料夹芯结构研究现状及其在船舶工程的应用[J]. 舰船科学技术, 2018, 40(2): 1-7. DOI: 10.3404/j.issn.1672-7649.2018.02.001
ZHU Zixu, ZHU Xi, LI Yongqing, et al. Present researches about sandwich composite structures and its applies in ship industry[J]. Ship Science and Technology, 2018, 40(2): 1-7(in Chinese). DOI: 10.3404/j.issn.1672-7649.2018.02.001
|
[2] |
SAYYAD A S, GHUGAL Y M. On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results[J]. Composite Structures, 2015, 129: 177-201. DOI: 10.1016/j.compstruct.2015.04.007
|
[3] |
钱勤, 李国清, 倪樵. 材料力学[M]. 武汉: 华中科技大学出版社, 2022: 195-196.
QIAN Qin, LI Guoqing, NI Qiao. Mechanics of materials[M]. Wuhan: Huazhong University of Science and Technology Press, 2022: 195-196(in Chinese).
|
[4] |
韩强, 张善元, 杨桂通. 结构静动力屈曲问题研究进展[J]. 力学进展, 1998(3): 62-73.
HAN Qiang, ZHANG Shanyuan, YANG Guitong. Research progress on static and dynamic buckling of structures[J]. Advances in Mechanics, 1998(3): 62-73(in Chinese).
|
[5] |
徐思萌. 不成熟的潜水器带来悲剧之旅[N]. 中国应急管理报, 2023-06-28(007).
XU Simeng. Immature submersible brings a tragic journey[N]. China Emergency Management News, 2023-06-28(007)(in Chinese).
|
[6] |
刘涛. 大深度潜水器结构分析与设计研究[D]. 无锡: 中国船舶科学研究中心, 2001.
LIU Tao. Analysis and design of deep-sea submersible structures[D]. Wuxi: China Ship Scientific Research Center, 2001(in Chinese).
|
[7] |
张广平, 戴干策. 复合材料蜂窝夹芯板及其应用[J]. 纤维复合材料, 2000, 17(2): 25-27, 6. DOI: 10.3969/j.issn.1003-6423.2000.02.008
ZHANG Guangping, DAI Gance. Composite honeycomb sandwich panel and its application[J]. Fiber Composites, 2000, 17(2): 25-27, 6(in Chinese). DOI: 10.3969/j.issn.1003-6423.2000.02.008
|
[8] |
董国滨. 混杂蜂窝芯的夹芯板稳定性分析[D]. 大连: 大连海事大学, 2022.
DONG Guobin. Stability analysis of honeycomb sandwich plate with hybrid honeycomb core[D]. Dalian: Dalian Marine University, 2022(in Chinese).
|
[9] |
吴龙兴. 复合材料泡沫夹芯壁板稳定性及承载能力研究[D]. 南京: 南京航空航天大学, 2020.
WU Longxing. Research on stability and load carrying capacity of foam-core composite sandwich panels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
|
[10] |
COTE F, BIAGI R, BART-SMITH H, et al. Structural response of pyramidal core sandwich columns[J]. International Journal of Solids and Structures, 2007, 44(10): 3533-3556. DOI: 10.1016/j.ijsolstr.2006.10.004
|
[11] |
邓云飞, 曾宪智, 周翔, 等. 复合材料褶皱夹芯结构研究进展[J]. 复合材料学报, 2020, 37(12): 2966-2983.
DENG Yunfei, ZENG Xianzhi, ZHOU Xiang, et al. Research progress for the composite sandwich structure with foldcore[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 2966-2983(in Chinese).
|
[12] |
魏然, 苏震宇, 刘洋. 先进树脂基复合材料在商用航空发动机中的应用[J]. 科技创新与应用, 2024, 14(3): 193-196.
WEI Ran, SU Zhenyu, LIU Yang. Application of advanced resin matrix composites in commercial aero-engines[J]. Technology Innovation and Application, 2024, 14(3): 193-196(in Chinese).
|
[13] |
叶轶. 复合材料在光伏组件中的应用开发案例[J]. 玻璃纤维, 2023(5): 46-48. DOI: 10.3969/j.issn.1005-6262.2023.05.010
YE Yi. Application development case of composite materials in photovoltaic modules[J]. Fiber Glass, 2023(5): 46-48(in Chinese). DOI: 10.3969/j.issn.1005-6262.2023.05.010
|
[14] |
张磊, 许帅康, 陈洁, 等. 列车车体轻量化设计研究进展[J]. 机械工程学报, 2023, 59(24): 177-196.
ZHANG Lei, XU Shuaikang, CHEN Jie, et al. Research progress in lightweight design of train body[J]. Journal of Mechanical Engineering, 2023, 59(24): 177-196(in Chinese).
|
[15] |
邓锐, 李华丽. 复合材料在轨道交通车体结构中的应用[J]. 机车车辆工艺, 2017(6): 4-6.
DENG Rui, LI Huali. Application of composite materials in the structure of rail transit car body[J]. Locomotive and Rolling Stock Technology, 2017(6): 4-6(in Chinese).
|
[16] |
周文华, 周百能. 夹芯泡沫材料性能及其在风电叶片上的应用[J]. 天津科技, 2023, 50(1): 75-78. DOI: 10.3969/j.issn.1006-8945.2023.01.020
ZHOU Wenhua, ZHOU Baineng. Applied research of sandwich foam in wind turbine blades[J]. Tianjin Science and Technology, 2023, 50(1): 75-78(in Chinese). DOI: 10.3969/j.issn.1006-8945.2023.01.020
|
[17] |
刁明霞, 果春焕, 高华兵, 等. 泡沫金属复合材料的研究进展[J]. 材料工程, 2022, 50(12): 60-70. DOI: 10.11868/j.issn.1001-4381.2021.000571
DIAO Mingxia, GUO Chunhuan, GAO Huabing, et al. Research progress in metal foam composites[J]. Journal of Materials Engineering, 2022, 50(12): 60-70(in Chinese). DOI: 10.11868/j.issn.1001-4381.2021.000571
|
[18] |
OSMAN A, GALAL K. Evaluation of different CFRP sandwich deck cores of deployable treadway bridge beam[C]//8th International Conference on Advanced Composite Materials in Bridges and Structures: Volume 1. Cham: Springer International Publishing, 2022: 469-479.
|
[19] |
鲍瑞雪. 新型四面体点阵夹芯结构汽车材料的隔振特性研究[J]. 科学技术创新, 2023(17): 1-4. DOI: 10.3969/j.issn.1673-1328.2023.17.002
BAO Ruixue. Study on vibration isolation characteristics of new tetrahedral lattice sandwich structure automotive materials[J]. Scientific and Technological Innovation, 2023(17): 1-4(in Chinese). DOI: 10.3969/j.issn.1673-1328.2023.17.002
|
[20] |
袁运飞, 廖俊, 宋佳文, 等. 点阵夹芯主动冷却结构发展现状与展望[J]. 航空工程进展, 2021, 12(6): 13-25.
YUAN Yunfei, LIAO Jun, SONG Jiawen, et al. Development status and prospect of lattice sandwich active cooling structure[J]. Advances in Aeronautical Science and Engineering, 2021, 12(6): 13-25(in Chinese).
|
[21] |
陈浩. 碳纤维金字塔点阵夹芯假脚结构的力学性能研究[D]. 天津: 天津科技大学, 2023.
CHEN Hao. Study on mechanical properties of carbon fiber pyramid lattice sandwich prosthetic foot[D]. Tianjin: Tianjin University of Science and Technology, 2023(in Chinese).
|
[22] |
MIAO X Y, CHEN X. Structural transverse cracking mechanisms of trailing edge regions in composite wind turbine blades[J]. Composite Structures, 2023, 308: 116680. DOI: 10.1016/j.compstruct.2023.116680
|
[23] |
JOHNSON A. Novel hybrid structural core sandwich materials for aircraft applications, 11th Euro-Japanese Symposium on Composite Materials[D]. Porto: University of Porto, 2008.
|
[24] |
李开开. 褶皱夹芯结构的静/动态连接研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
LI Kaikai. Research on static/dynamic connection of fold sandwich structure[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
|
[25] |
XU J, FU C, FU Q, et al. Flexible arc-armor inspired by origami[J]. International Journal of Mechanical Sciences, 2021, 201: 106463. DOI: 10.1016/j.ijmecsci.2021.106463
|
[26] |
DEBNATH S, FEI L J. Origami theory and its applications: A literature review[J]. World Academy of Science, Engineering and Technology, 2013, 7(1): 113-117.
|
[27] |
REISSNER E. On the theory of bending of elastic plates[J]. Journal of Mathematics and Physics, 1947, 23(1-4): 184-191.
|
[28] |
ERINGEN A C. Bending and buckling of rectangular sandwich plates[J]. Technical Report Archive & Image Library, 1950, 18(2225): 330.
|
[29] |
杜庆华. 三合板的一般弹性理论[J]. 物理学报, 1954(4): 395-411. DOI: 10.7498/aps.10.395
DU Qinghua. General equation of sandwich plates under transverse loads and edgewise shears and compression[J]. Acta Physica Sinica, 1954(4): 395-411(in Chinese). DOI: 10.7498/aps.10.395
|
[30] |
吴文涛, 方耀楚, 倪康. 非连续芯层夹芯结构稳定性研究综述[J]. 工程建设, 2021, 53(4): 1-8.
WU Wentao, FANG Yaochu, NI Kang. Research review on stability of sandwich structure of discontinuous core layer[J]. Engineering Construction, 2021, 53(4): 1-8(in Chinese).
|
[31] |
SHABANI Y, KHORSHIDI K. Buckling analysis of sandwich structures with metamaterials core integrated by graphene nanoplatelets reinforced polymer composite[J]. Mechanics of Advanced Composite Structures, 2023, 10(1): 1-10.
|
[32] |
ALLEN H G. Analysis and design of structural sandwich panels: The common wealth and international library: Structures and solid body mechanics division[M]. Hungary: Pergamon Press, 2013: 235-244.
|
[33] |
GIBSON L J, ASHBY M F, SCHAJER G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1982, 382(1782): 25-42.
|
[34] |
富明慧, 尹久仁. 蜂窝芯层的等效弹性参数[J]. 力学学报, 1999(1): 113-118. DOI: 10.3321/j.issn:0459-1879.1999.01.014
FU Minghui, YIN Jiuren. Equivalent elastic parameters of honeycomb core layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999(1): 113-118(in Chinese). DOI: 10.3321/j.issn:0459-1879.1999.01.014
|
[35] |
夏利娟, 金咸定, 汪庠宝. 卫星结构蜂窝夹层板的等效计算[J]. 上海交通大学学报, 2003, 37(7): 999-1001. DOI: 10.3321/j.issn:1006-2467.2003.07.008
XIA Lijuan, JIN Xianding, WANG Xiangbao. Equivalent analysis of honeycomb sandwich plates for satellite structure[J]. Journal of Shanghai Jiao Tong University, 2003, 37(7): 999-1001(in Chinese). DOI: 10.3321/j.issn:1006-2467.2003.07.008
|
[36] |
张铁亮, 丁运亮, 金海波. 蜂窝夹层板结构等效模型比较分析[J]. 应用力学学报, 2011, 28(3): 275-282.
ZHANG Tieliang, DING Yunliang, JIN Haibo. Comparative analysis of equivalent model of honeycomb sandwich plate structure[J]. Chinese Journal of Applied Mechanics, 2011, 28(3): 275-282(in Chinese).
|
[37] |
CHEN Q, PUGNO N M. In-plane elastic buckling of hierarchical honeycomb materials[J]. European Journal of Mechanics-A/Solids, 2012, 34: 120-129. DOI: 10.1016/j.euromechsol.2011.12.003
|
[38] |
李响, 宋小俊, 曹祥斌. 轻质高强类蜂窝夹层结构轴向压缩屈曲失效分析[J]. 塑性工程学报, 2021, 28(9): 137-143. DOI: 10.3969/j.issn.1007-2012.2021.09.018
LI Xiang, SONG Xiaojun, CAO Xiangbin. Failure analysis of axial compression buckling of lightweight and high strength quasi-honeycomb sandwich structure[J]. Journal of Plasticity Engineering, 2021, 28(9): 137-143(in Chinese). DOI: 10.3969/j.issn.1007-2012.2021.09.018
|
[39] |
THANG P T, KIM C, JANG H, et al. Buckling behavior analysis of hybrid-honeycomb sandwich cylindrical shells[J]. Ocean Engineering, 2023, 276: 114214. DOI: 10.1016/j.oceaneng.2023.114214
|
[40] |
LIU S, WANG K, WANG B. Buckling and vibration characteristic of anisotropic sandwich plates with negative Poisson's ratio based on isogeometric analysis[J]. Mechanics of Advanced Materials and Structures, 2023, 31(23): 1-16.
|
[41] |
VAN LIEU P, ZENKOUR A M, LUU G T. Static bending and buckling of FG sandwich nanobeams with auxetic honeycomb core[J]. European Journal of Mechanics-A/Solids, 2024, 103: 105181. DOI: 10.1016/j.euromechsol.2023.105181
|
[42] |
胡越. 缝合泡沫夹芯复合材料力学性能的研究[D]. 武汉: 武汉理工大学, 2021.
HU Yue. Study on mechanical properties of sutured foam sandwich composites[D]. Wuhan: Wuhan University of Technology, 2021(in Chinese).
|
[43] |
GIBSON L J, ASHBY M F. Cellular solids: Structure and properties[M]. 2nd ed. New York: Cambridge University Press, 1997: 1-200.
|
[44] |
徐诗峰. 泡沫铝夹芯结构抗低速冲击性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
XU Shifeng. Research on the low-velocity impact performance of aluminum foam sandwich structure[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
|
[45] |
CHEN C, LU T J. A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids[J]. International Journal of Solids and Structures, 2000, 37(52): 7769-7786. DOI: 10.1016/S0020-7683(00)00003-2
|
[46] |
王二恒, 虞吉林, 王飞, 等. 泡沫铝材料准静态本构关系的理论和实验研究[J]. 力学学报, 2004, 36(6): 673-679. DOI: 10.3321/j.issn:0459-1879.2004.06.005
WANG Erheng, YU Jilin, WANG Fei, et al. A theoretical and experimental study on the quasi-static constitutive model of aluminum foams[J]. Acta Mechanica Sinica, 2004, 36(6): 673-679(in Chinese). DOI: 10.3321/j.issn:0459-1879.2004.06.005
|
[47] |
DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6): 1253-1283.
|
[48] |
SU B, ZHOU Z, XIAO G, et al. A pressure-dependent phenomenological constitutive model for transversely isotropic foams[J]. International Journal of Mechanical Sciences, 2017, 120: 237-248. DOI: 10.1016/j.ijmecsci.2016.12.004
|
[49] |
HUANG B, HU X, LIU J. Modelling of inter-laminar toughening from chopped kevlar fibers[J]. Composites Science and Technology, 2004, 64(13-14): 2165-2175. DOI: 10.1016/j.compscitech.2004.03.014
|
[50] |
DRANSFIELD K, BAILLIE C, MAI Y. Improving the delamination resistance of CFRP by stitching—A review[J]. Composites Science and Technology, 1994, 50(3): 305-317. DOI: 10.1016/0266-3538(94)90019-1
|
[51] |
桂良进, 叶宁, 郦正能, 等. 含椭圆分层缝纫复合材料层板的局部屈曲研究[J]. 北京航空航天大学学报, 2000(6): 701-704.
GUI Liangjin, YE Ning, LI Zhengneng, et al. Study on local buckling of composite laminates with elliptical delamination sewing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000(6): 701-704(in Chinese).
|
[52] |
VIDWANS A, TROVALUSCI P, FANTUZZI N, et al. Application of column buckling theory to steel aluminium foam sandwich panels[J]. Structures, 2023, 54: 607-617. DOI: 10.1016/j.istruc.2023.04.112
|
[53] |
LI C, PAN D R, ZHAO Q L, et al. Overall buckling characteristics of slender FRP-foam sandwich tube under axial compression[J]. Composites Communications, 2021, 24: 100585. DOI: 10.1016/j.coco.2020.100585
|
[54] |
郑华勇, 吴林志, 马力, 等. Kagome点阵夹芯板的抗冲击性能研究[J]. 工程力学, 2007, 24(8): 86-92. DOI: 10.3969/j.issn.1000-4750.2007.08.016
ZHENG Huayong, WU Linzhi, MA Li, et al. Research on impulse-resistant performance of sandwich panels with Kagome truss core[J]. Engineering Mechanics, 2007, 24(8): 86-92(in Chinese). DOI: 10.3969/j.issn.1000-4750.2007.08.016
|
[55] |
WADLEY H. Fabrication and structural performance of periodic cellular metal sandwich structures[J]. Composites Science and Technology, 2003, 63(16): 2331-2343. DOI: 10.1016/S0266-3538(03)00266-5
|
[56] |
DESHPANDE V S, FLECK N A. Collapse of truss core sandwich beams in 3-point bending[J]. International Journal of Solids and Structures, 2001, 38(36): 6275-6305.
|
[57] |
娄佳. 复合材料点阵夹芯结构的弯曲、屈曲和振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
LOU Jia. Bending, buckling and vibration properties of composite lattice sandwich structures[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
|
[58] |
杨丽红, 韩笑, 吴林志. 应用分解刚度法分析金属点阵夹芯板屈曲问题[J]. 强度与环境, 2017, 44(3): 18-24.
YANG Lihong, HAN Xiao, WU Linzhi. Buckling analysis of metal truss-core panels using split rigidity method[J]. Structure & Environment Engineering, 2017, 44(3): 18-24(in Chinese).
|
[59] |
FENG L, WU L, YU G. The optimum layer number of multi-layer pyramidal core sandwich columns under in-plane compression[J]. Theoretical and Applied Mechanics Letters, 2016, 6(2): 65-68. DOI: 10.1016/j.taml.2016.01.002
|
[60] |
丁若晨. 基于激光选区熔化的金属点阵结构力学性能研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2021.
DING Ruochen. Study on mechanical properties of metal lattice structures based on selective laser melting[D]. Beijing: The Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2021(in Chinese).
|
[61] |
HEIMBS S. Foldcore sandwich structures and their impact behaviour: An overview[J]. Dynamic Failure of Composite and Sandwich Structures, 2012, 192: 491-544.
|
[62] |
DOSIKOVA Y I. Studies of soundproofing characteristics of sandwich panels with cores of Z-crimp type[J]. Russian Aeronautics, 2013, 56(2): 194-198. DOI: 10.3103/S1068799813020141
|
[63] |
MIURA K. New structural form of sandwich core[J]. Journal of Aircraft, 1975, 12(5): 437-441. DOI: 10.2514/3.44468
|
[64] |
PAIMUSHIN V N, ZAKIROV I I, KARPIKOV Y A. Theoretical and experimental technique of determining the mechanical characteristics of folded structure core in the form of Z-crimp: Theoretical foundations and core compression in transverse direction[J]. Russian Aeronautics, 2012, 55(3): 233-244. DOI: 10.3103/S1068799812030038
|
[65] |
LEBEE A, SAB K. Transverse shear stiffness of a chevron folded core used in sandwich construction[J]. International Journal of Solids and Structures, 2010, 47(18-19): 2620-2629. DOI: 10.1016/j.ijsolstr.2010.05.024
|
[66] |
SHI Z, ZHONG Y F, YI Q S, et al. Applications of VAM-based equivalent beam model on effective performance of composite sandwich beam with M-shaped folded core[J]. Composite Structures, 2023, 304: 116395. DOI: 10.1016/j.compstruct.2022.116395
|
[67] |
方耀楚, 李刚. 基于板理论的层级褶皱结构失效模式分析[J]. 固体力学学报, 2014, 35(3): 241-248.
FANG Yaochu, LI Gang. Failure mode analysis of the structure with hierarchical corrugated truss core by using the theory of plate[J]. Chinese Journal of Solid Mechanics, 2014, 35(3): 241-248(in Chinese).
|
[68] |
KOOISTRA G W, DESHPANDE V, WADLEY H N G. Hierarchical corrugated core sandwich panel concepts[J]. The American Society of Mechanical Engineers, 2007, 74(2): 259-268.
|
[69] |
刘彪. 碳纤增强褶皱夹芯板壳的设计制备及力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2021.
LIU Biao. Design, fabrication and mechanical properties of carbon-fiber-reinforced foldcore sandwich panel and shell[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
|
[70] |
唐劼尧, 柏敏建. 轴压载荷下复合材料蜂窝夹芯板的稳定性研究[J]. 兵器装备工程学报, 2020, 41(9): 242-246. DOI: 10.11809/bqzbgcxb2020.09.045
TANG Jieyao, BAI Minjian. Stability evaluation on composite honeycomb sandwich panels subjected to compressive loadings[J]. Journal of Ordnance Equipment Engineering, 2020, 41(9): 242-246(in Chinese). DOI: 10.11809/bqzbgcxb2020.09.045
|
[71] |
魏家睿, 吴琼, 吴伟, 等. 轴压铝合金蜂窝圆筒整体稳定性研究[J/OL]. 北京航空航天大学学报, 1-16[2024-08-29]. 网址: doi.org/10.13700/j.bh.1001-5965.2023.0135.
WEI Jiarui, WU Qiong, WU Wei, et al. Study on global stability of aluminum alloy honeycomb cylinder under axial compression[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1-16[2024-08-29]. Website: doi.org/10.13700/j.bh.1001-5965.2023.0135(in Chinese).
|
[72] |
窦明月, 王显峰, 张冬梅, 等. Nomex蜂窝芯静态压缩屈曲与后屈曲分析[J]. 南京航空航天大学学报, 2019, 51(1): 69-74.
DOU Mingyue, WANG Xianfeng, ZHANG Dongmei, et al. Buckling and post-buckling of nomex honeycomb cores under compression[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(1): 69-74(in Chinese).
|
[73] |
LAI X Y, ZHONG Y F, LIU R, et al. Static and global buckling analysis of sandwich panels with improved star-shaped honeycomb using VAM-based downscaling model[J]. Composite Structures, 2023, 323: 117458. DOI: 10.1016/j.compstruct.2023.117458
|
[74] |
YANG F, ZHONG Y, LIU R, et al. Effective performance analysis of stiffened honeycomb sandwich panels using VAM-based equivalent model[J]. Thin-Walled Structures, 2023, 185: 110590. DOI: 10.1016/j.tws.2023.110590
|
[75] |
LIU X, ZHONG Y, LIU R, et al. Buckling and post-buckling analysis of butterfly-shaped auxetic core sandwich plates based on variational asymptotic method[J]. Thin-Walled Structures, 2023, 184: 110464. DOI: 10.1016/j.tws.2022.110464
|
[76] |
SARAFRAZ M, SEIDI H, KAKAVAND F, et al. Free vibration and buckling analyses of a rectangular sandwich plate with an auxetic honeycomb core and laminated three-phase polymer/GNP/fiber face sheets[J]. Thin-Walled Structures, 2023, 183: 110331. DOI: 10.1016/j.tws.2022.110331
|
[77] |
洪俊青, 刘伟庆, 方海. 格构增强型泡沫夹层结构腹板剪切屈曲分析[J]. 工业建筑, 2014(10): 40-45.
HONG Junqing, LIU Weiqing, FANG Hai. Shear buckling analysis of web of lattice enhanced foam sandwich structure[J]. Industrial Construction, 2014(10): 40-45(in Chinese).
|
[78] |
YAVUZ A K, PAPOULIA K D, PHOENIX S L, et al. Stability analysis of stitched composite plate system with delamination under hygrothermal pressure[J]. AIAA Journal, 2006, 44(7): 1579-1585. DOI: 10.2514/1.17367
|
[79] |
马元春, 俸翔, 卢子兴, 等. 缝纫泡沫夹芯复合材料板的稳定性分析[J]. 复合材料学报, 2011, 28(2): 201-205.
MA Yuanchun, FENG Xiang, LU Zixing, et al. Stability analysis of stitched foam-core composite sandwich plates[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 201-205(in Chinese).
|
[80] |
邢鹏程, 陈震, 戴广民. 泡沫铝填充Ⅰ型夹层板尺寸参数对腹板屈曲失效模式的影响分析[J]. 中国舰船研究, 2021, 16(3): 112-119.
XING Pengcheng, CHEN Zhen, DAI Guangmin. Analysis of buckling failure modes of composite sandwich panels filled with aluminum foam[J]. Chinese Journal of Ship Research, 2021, 16(3): 112-119(in Chinese).
|
[81] |
WU D, GU X, PENG A, et al. Post-buckling behavior and failure analysis of asymmetric sandwich panels under uniaxial compression[J]. Journal of Sandwich Structures & Materials, 2024, 26(1): 38-55.
|
[82] |
HYUN S, KARLSSON A M, TORQUATO S, et al. Simulated properties of Kagomé and tetragonal truss core panels[J]. International Journal of Solids and Structures, 2003, 40(25): 6989-6998. DOI: 10.1016/S0020-7683(03)00350-0
|
[83] |
朱波, 周叮, 刘伟庆. 树脂柱对复合材料夹层板屈曲及动力学性能的影响分析[J]. 振动与冲击, 2011, 30(4): 8-11. DOI: 10.3969/j.issn.1000-3835.2011.04.002
ZHU Bo, ZHOU Ding, LIU Qingwei. Effect of resinic columns on buckling and vibration of a composite sandwich plate[J]. Journal of Vibration and Shock, 2011, 30(4): 8-11(in Chinese). DOI: 10.3969/j.issn.1000-3835.2011.04.002
|
[84] |
谢闽辉. 碳纤维点阵材料制备及力学行为研究[D]. 长春: 长春工业大学, 2023.
XIE Minhui. Preparation and mechanical behavior of carbon fiber lattice materials[D]. Changchun: Changchun University of Technology, 2023(in Chinese).
|
[85] |
WU Q, VAZIRI A, ASL M E, et al. Lattice materials with pyramidal hierarchy: Systematic analysis and three dimensional failure mechanism maps[J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 112-144. DOI: 10.1016/j.jmps.2018.12.006
|
[86] |
熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展[J]. 宇航学报, 2020, 41(6): 749-760. DOI: 10.3873/j.issn.1000-1328.2020.06.012
XIONG Jian, DU Yuntong, YANG Wen, et al. Research progress on design and mechanical properties of lightweight composite sandwich structures[J]. Journal of Astronautics, 2020, 41(6): 749-760(in Chinese). DOI: 10.3873/j.issn.1000-1328.2020.06.012
|
[87] |
MOHAMMED A U, IMAD B, KUMAR S, et al. Enhancing compressive performance in 3D printed pyramidal lattice structures with geometrically tailored I-shaped struts[J]. Materials and Design, 2024, 237: 112524. DOI: 10.1016/j.matdes.2023.112524
|
[88] |
CAO Z L, YANG S X. Study on damage failure for a new double-triangular truss core sandwich structure[J]. Heliyon, 2023, 9(9): e19917.
|
[89] |
周华志, 王志瑾. M-型皱褶芯材夹层板吸能性能研究[J]. 航空学报, 2016, 37(2): 579-587.
ZHOU Huazhi, WANG Zhijin. Analysis of energy absorption capability of M-type folded core sandwich structure[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 579-587(in Chinese).
|
[90] |
DU Y, SONG C, XIONG J, et al. Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami[J]. Composites Science and Technology, 2019, 174: 94-105. DOI: 10.1016/j.compscitech.2019.02.019
|
[91] |
殷乾峰. 碳纤增强褶皱夹芯圆台壳结构设计及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
YIN Qianfeng. Design, fabrication and mechanical properies of carbon-fiber-reinforced foldcore sandwich panel and shell[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
|
[92] |
王宝芹, 王沫楠, 刘长喜. 基于多尺度方法的蜂窝夹层复合材料结构轴向压缩稳定性[J]. 复合材料学报, 2020, 37(3): 601-608.
WANG Baoqin, WANG Monan, LIU Changxi. Stability of honeycomb sandwich composite structure under axial compression based on multi-scale method[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 601-608(in Chinese).
|
[93] |
刘玥, 刘伟, 华洲, 等. 复合材料nomex蜂窝夹芯结构的平压试验研究[J]. 航空制造技术, 2020, 63(17): 86-91.
LIU Yue, LIU Wei, HUA Zhou, et al. Experimental study on nomex honeycomb sandwich structure subjected to out-of-plane compression load[J]. Aeronautical Manufacturing Technology, 2020, 63(17): 86-91(in Chinese).
|
[94] |
ZHANG S, MA Y, DENG Z. Analytical solution and experimental verification for the buckling failure of additively manufactured octagonal honeycombs[J]. Composite Structures, 2023, 303: 116306. DOI: 10.1016/j.compstruct.2022.116306
|
[95] |
LUO Y, HU S P, LIU Y Z, et al. Fabrication and mechanical properties of three-dimensional enhanced TiAl/GH3536 hetero-honeycomb sandwich structure[J]. Journal of Materials Research and Technology, 2023, 26: 7490-7501. DOI: 10.1016/j.jmrt.2023.09.064
|
[96] |
SUN M, KENDALL P, WOWK D, et al. Out-of-plane compressive response of aluminum honeycomb sandwich panels: Adhesive geometry and bonding effects[J]. Thin-Walled Structures, 2024, 196: 111509. DOI: 10.1016/j.tws.2023.111509
|
[97] |
WU Z, ZENG J, XIAO J, et al. Flexural performance of integrated 3D composite sandwich structures[J]. Journal of Reinforced Plastics and Composites, 2014, 33(16): 1496-1507. DOI: 10.1177/0731684414539026
|
[98] |
欧阳懿桢, 方海, 刘伟庆, 等. 单向纤维腹板格构增强复合材料夹层板侧压试验研究[J]. 水利与建筑工程学报, 2013, 11(4): 24-27.
OUYANG yizhen, FANG Hai, LIU Weiqing, et al. Research on lateral compression test for fiber-reinforced composite sandwich plates with one-way web[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(4): 24-27(in Chinese).
|
[99] |
陈悦, 朱锡, 李华东, 等. 含分层缺陷复合材料夹芯梁力学特性及失效模式的试验研究[J]. 海军工程大学学报, 2016, 28(6): 65-70.
CHEN Yue, ZHU Xi, LI Huadong, et al. Mechanical behavior and failure modes of composite sandwich columns with face/core debond[J]. Journal of Naval University of Engineering, 2016, 28(6): 65-70(in Chinese).
|
[100] |
HOSSEINI R, TOOSKI M Y, KHORSHIDVAND A R, et al. Buckling behavior of fiber reinforced Innegra sandwich beams incorporating carbon nanofiber[J]. Functional Composites and Structures, 2023, 5(1): 015003. DOI: 10.1088/2631-6331/acb890
|
[101] |
SOHN M S, HU X Z. Model II delamination toughness of carbon-fibre/epoxy composites with chopped Kevlar fibre reinforcement[J]. Composites Science and Technology, 1994, 52(3): 439-448. DOI: 10.1016/0266-3538(94)90179-1
|
[102] |
EYVAZIAN A, TAGHIZADEH S A, HAMOUDA A M, et al. Buckling and crushing behavior of foam-core hybrid composite sandwich columns under quasi-static edgewise compression[J]. Journal of Sandwich Structures and Materials, 2021, 23(7): 2643-2670. DOI: 10.1177/1099636219894665
|
[103] |
SHARMA S C, KRISHNA M, MURTHY H. Buckling response of stitched polyurethane foam composite sandwich structures[J]. Journal of Reinforced Plastics and Composites, 2004, 23(12): 1267-1277. DOI: 10.1177/0731684404037042
|
[104] |
SONG C, FAN W, LIU T, et al. A review on three-dimensional stitched composites and their research perspectives[J]. Composites Part A: Applied Science and Manufacturing, 2022, 153: 106730. DOI: 10.1016/j.compositesa.2021.106730
|
[105] |
BILISIK K, ERDOGAN G, SAPANCI E, et al. Three-dimensional nanoprepreg and nanostitched aramid/phenolic multiwall carbon nanotubes composites: Experimental determination of in-plane shear[J]. Journal of Composite Materials, 2019, 53(28-30): 4077-4096. DOI: 10.1177/0021998319854211
|
[106] |
SUN C, ALBUSTANI H, PHADNIS V A, et al. Improving the structural integrity of foam-core sandwich composites using continuous carbon fiber stitching[J]. Composite Structures, 2023, 324: 117509. DOI: 10.1016/j.compstruct.2023.117509
|
[107] |
LI M, WU L, MA L, et al. Mechanical response of all-composite pyramidal lattice truss core sandwich structures[J]. Journal of Materials Science & Technology, 2011, 27(6): 570-576.
|
[108] |
LI X, WU L, MA L, et al. Fabrication and mechanical properties of composite pyramidal truss core sandwich panels with novel reinforced frames[J]. Journal of Reinforced Plastics and Composites, 2016, 35(16): 1260-1274. DOI: 10.1177/0731684416648229
|
[109] |
RACKLIFFE M E, JENSEN D W, LUCAS W K. Local and global buckling of ultra-lightweight isotruss® structures[J]. Composites Science and Technology, 2006, 66(2): 283-288. DOI: 10.1016/j.compscitech.2005.04.038
|
[110] |
WANG B, WU L, MA L, et al. Fabrication and testing of carbon fiber reinforced truss core sandwich panels[J]. Journal of Materials Science & Technology, 2009, 25(4): 547-550.
|
[111] |
SCHAEDLER T A, CHAN L J, CLOUGH E C, et al. Nanocrystalline aluminum truss cores for lightweight sandwich structures[J]. Jom, 2017, 69(12): 2626-2634. DOI: 10.1007/s11837-017-2539-8
|
[112] |
ZHANG H, SHI H, FAN H. Additively manufactured truss-core sandwich cylinders: Materials, processes and performances[J]. International Journal of Mechanical Sciences, 2024, 266: 108966.
|
[113] |
KHALEDI H, ROSTAMIYAN Y. Compressive and bending behavior of foam-filled composite sandwich panel with novel M-shaped core reinforced by nano-silica[J]. Journal of Thermoplastic Composite Materials, 2023, 36(6): 2482-2504. DOI: 10.1177/08927057221094453
|
[114] |
WANG B, LUO B, HU W, et al. Manufacturing and mechanical testing of woven lattice truss C-sandwich radome composites[J]. Composite Structures, 2023, 308: 116675. DOI: 10.1016/j.compstruct.2023.116675
|
[115] |
FAN M, ZENG T, WU R, et al. Microstructure design and mechanical properties of 3D printed graded lattice sandwich structures with tailored porosity[J]. Composite Structures, 2023, 321: 117323. DOI: 10.1016/j.compstruct.2023.117323
|
[116] |
HEIMBS S, CICHOSZ J, KLAUS M, et al. Sandwich structures with textile-reinforced composite foldcores under impact loads[J]. Composite Structures, 2010, 92(6): 1485-1497. DOI: 10.1016/j.compstruct.2009.11.001
|
[117] |
WEAVER P M. Design of laminated composite cylindrical shells under axial compression[J]. Composites Part B: Engineering, 2000, 31(8): 669-679. DOI: 10.1016/S1359-8368(00)00029-9
|
[118] |
易青山. 基于变分渐近法的褶皱夹芯结构等效模型[D]. 重庆: 重庆大学, 2022.
YI Qingshan. Equivalent model of the sandwich structure with folded core based on variational asymptotic method[D]. Chongqing: Chongqing University, 2022(in Chinese).
|
[119] |
田珂. 锥柱一体化褶皱夹芯结构的设计及其力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2022.
TIAN Ke. Design and mechanical properties of cone-column integrated fold sanwich structure[D]. Harbin: Harbin Institute of Technology, 2022(in Chinese).
|
[1] | ZHANG Senlin, WU Zhen, REN Xiaohui. Enhanced theory and finite element method for wrinkling analysis of composite sandwich structure[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4840-4848. DOI: 10.13801/j.cnki.fhclxb.20221110.002 |
[2] | CHENG Shuliang, WU Lingjie, SUN Shuai, YANG Shuo, XIN Yajun. Experiment and numerical simulation of dynamic mechanical properties of X-lattice sandwich structure under local impact[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3641-3651. DOI: 10.13801/j.cnki.fhclxb.20210903.005 |
[3] | ZHANG Yawen, CHEN Bingzhi, SHI Shanshan, MAO Haitao. Low-velocity impact performance of grid-honeycomb hybrid core sandwich structure[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 381-389. DOI: 10.13801/j.cnki.fhclxb.20210311.002 |
[4] | ZHANG Jiarui, ZHAI Guangtao, LI Wenli. Fabrication and compression performance of continuous fiber Octet-truss lattice sandwich structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1767-1774. DOI: 10.13801/j.cnki.fhclxb.20201209.001 |
[5] | CONG Lixin, SUN Yuguo, GAO Liang, CHEN Peng. Preparation and compression performance of an improved V-type folded GFRP sandwich structure[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 456-464. |
[6] | XU Menghui, QIU Zhiping. Uncertain analysis and optimization of compressive property of all-composite lattice truss core sandwich structure[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 177-184. |
[7] | LIU Sui, GUAN Zhidong, GUO Xia, SUN Kai, LIU Weiping, KONG Jiaoyue. Process parameters effect on the edgewise compressive behavior of repaired honeycomb sandwich structures[J]. Acta Materiae Compositae Sinica, 2013, 30(3): 177-183. |
[8] | ZHANG Jiaying, DUAN Yuexin, ZHAO Yan, CHEN Jiping. Interface properties of foam-core sandwich structures fabricated by VARI process[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 73-82. |
[9] | SUN Yuguo, GAO Liang. Heat transfer characteristics of composite sandwich structure with lattice cores[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 185-195. |
[10] | 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 108-115. |
1. |
付强,李浩明,彭磊,李智,林木松,张丽,谢松瑜,唐征海,郭宝春. 填充型导热绝缘硅橡胶复合材料的研究进展. 绝缘材料. 2024(09): 1-14 .
![]() |