Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
GAI Xiaoqian, LI Yu, LEI Tong, et al. Research progress on the application of lignin-based functional materials in barrier packaging paper[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3935-3949. doi: 10.13801/j.cnki.fhclxb.20240314.004
Citation: GAI Xiaoqian, LI Yu, LEI Tong, et al. Research progress on the application of lignin-based functional materials in barrier packaging paper[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3935-3949. doi: 10.13801/j.cnki.fhclxb.20240314.004

Research progress on the application of lignin-based functional materials in barrier packaging paper

doi: 10.13801/j.cnki.fhclxb.20240314.004
Funds:  National Natural Science Foundation of China (22208161; 22208163); Open Fund of the Key Laboratory of Plant Fiber Functional Materials of the State Forestry and Grassland Administration (2022KFJJ09)
  • Received Date: 2023-12-18
  • Accepted Date: 2024-02-22
  • Rev Recd Date: 2024-02-12
  • Available Online: 2024-03-15
  • Publish Date: 2024-08-01
  • With the gradual depletion of petroleum resources, bio-based barrier packaging materials have garnered growing attention as an eco-friendly alternative to conventional petroleum-based plastic packaging. Lignin, the second most abundant natural polymer and the only renewable resource rich in repetitive benzene ring structural units, possesses biodegradability, biocompatibility and excellent processability. Currently, the majority of lignin is still disposed of through incineration as industrial by-products, resulting in limited utilization and low added value. Due to its unique chemical structure, water resistance, solvent resistance, aging resistance, and UV resistance, lignin exhibits significant potential in the development of bio-based barrier materials. However, further consideration is required regarding the structural characteristics of lignin, its multifaceted barrier properties in material applications, the establishment of structure-property relationships, and exploration of diverse application scenarios. Therefore, the present review provides a systematic and comprehensive review of the application of lignin-based functional materials in barrier packaging paper. Firstly, the structure and origin of lignin are briefly elucidated. A comprehensive overview of the current status of the application of lignin-based functional materials in barrier packaging papers is then provided, with particular emphasis on the advances in the use of lignin-based functional materials for water, gas, oil, ultraviolet radiation and flame retardancy properties in packaging paper. Finally, the primary challenges and future prospects for the development of lignin-based functional materials in barrier packaging paper applications are discussed. This review will provide a theoretical foundation for the utilization of lignin-based functional materials in the production of paper with single or multiple barrier properties, thereby providing practical significance for the industrial-scale manufacturing of value-added products derived from lignin.

     

  • loading
  • [1]
    LACHANCE A M, HOU Z, FAROOQUI M M, et al. Polyolefin films with outstanding barrier properties based on one-step coassembled nanocoatings[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1067-1077.
    [2]
    PARK J H, KOO M S, CHO S H, et al. Comparison of thermal and optical properties and flowability of fossil-based and bio-based polycarbonate[J]. Macromolecular Research, 2017, 25(11): 1135-1144.
    [3]
    DUFOUR F. The fate of all of our plastics[J]. Nature, 2017, 547(7664): 382.
    [4]
    JANG Y C, LEE G, KWON Y, et al. Recycling and management practices of plastic packaging waste towards a circular economy in South Korea[J]. Resources, Conservation and Recycling, 2020, 158: 104798.
    [5]
    WU Y, YU X, DING W, et al. Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review[J]. International Journal of Biological Macromolecules, 2023, 249: 125922.
    [6]
    WANG W, GU F, DENG Z, et al. Multilayer surface construction for enhancing barrier properties of cellulose-based packaging[J]. Carbohydrate Polymers, 2021, 255: 117431.
    [7]
    RASTOGI V, SAMYN P. Bio-based coatings for paper applications[J]. Coatings, 2015, 5(4): 887-930.
    [8]
    HUANG H B, MAO L, WANG W, et al. A facile strategy to fabricate antibacterial hydrophobic, high-barrier, cellulose papersheets for food packaging[J]. International Journal of Biological Macromolecules, 2023, 236: 123630.
    [9]
    YOOK S, PARK H, PARK H, et al. Barrier coatings with various types of cellulose nanofibrils and their barrier properties[J]. Cellulose, 2020, 27(8): 4509-4523.
    [10]
    RODIONOVA G, LENES M, ERIKSEN Ø, et al. Surface chemical modification of microfibrillated cellulose: Improvement of barrier properties for packaging applications[J]. Cellulose, 2010, 18(1): 127-134.
    [11]
    PERESIN M S, KAMMIOVIRTA K, HEIKKINEN H, et al. Understanding the mechanisms of oxygen diffusion through surface functionalized nanocellulose films[J]. Carbohydrate Polymers, 2017, 174: 309-317.
    [12]
    SOLALA I, BORDES R, LARSSON A. Water vapor mass transport across nanofibrillated cellulose films: Effect of surface hydrophobization[J]. Cellulose, 2017, 25(1): 347-356.
    [13]
    SAMYN P. Wetting and hydrophobic modification of cellulose surfaces for paper applications[J]. Journal of Materials Science, 2013, 48(19): 6455-6498.
    [14]
    SHOREY R, MEKONNEN T H. Sustainable paper coating with enhanced barrier properties based on esterified lignin and PBAT blend[J]. International Journal of Biological Macromolecules, 2022, 209: 472-484.
    [15]
    VAEZI K, ASADPOUR G, SHARIFI S H. Effect of coating with novel bio nanocomposites of cationic starch/cellulose nanocrystals on the fundamental properties of the packaging paper[J]. Polymer Testing, 2019, 80: 106080.
    [16]
    TIAN X W, WU M, WANG Z W, et al. A high-stable soybean-oil-based epoxy acrylate emulsion stabilized by silanized nanocrystalline cellulose as a sustainable paper coating for enhanced water vapor barrier[J]. Journal of Colloid and Interface Science, 2022, 610: 1043-1056.
    [17]
    REN L, YAN X, ZHOU J, et al. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films[J]. International Journal of Biological Macromolecules, 2017, 105(Pt 3): 1636-1643.
    [18]
    WANG W, GUO T, SUN K, et al. Lignin redistribution for enhancing barrier properties of cellulose-based materials[J]. Polymers (Basel), 2019, 11(12): 1929.
    [19]
    LIU Z H, LI B Z, YUAN J S, et al. Creative biological lignin conversion routes toward lignin valorization[J]. Trends Biotechnol, 2022, 40(12): 1550-1566.
    [20]
    YOU X Y, WANG X L, ZHANG H J, et al. Supertough lignin hydrogels with multienergy dissipative structures and ultrahigh antioxidative activities[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39892-39901.
    [21]
    AZADI P, INDERWILDI O R, FARNOOD R, et al. Liquid fuels, hydrogen and chemicals from lignin: A critical review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 506-523.
    [22]
    LISÝ A, HÁZ A, NADÁNYI R, et al. About hydrophobicity of lignin: A review of selected chemical methods for lignin valorisation in biopolymer production[J]. Energies, 2022, 15(17): 6213.
    [23]
    WANG D, GU Y, FENG S, et al. Lignin-containing biodegradable UV-blocking films: A review[J]. Green Chemistry, 2023, 25(22): 9020-9044.
    [24]
    YANG H, YU B, XU X, et al. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials[J]. Green Chemistry, 2020, 22(7): 2129-2161. doi: 10.1039/D0GC00449A
    [25]
    MEI Q, SHEN X, LIU H, et al. Selectively transform lignin into value-added chemicals[J]. Chinese Chemical Letters, 2019, 30(1): 15-24.
    [26]
    LIU C, LUAN P, LI Q, et al. Biopolymers derived from trees as sustainable multifunctional materials: A review[J]. Advanced Materials, 2021, 33(28): e2001654. doi: 10.1002/adma.202001654
    [27]
    DOHERTY W O S, MOUSAVIOUN P, FELLOWS C M. Value-adding to cellulosic ethanol: Lignin polymers[J]. Industrial Crops and Products, 2011, 33(2): 259-276. doi: 10.1016/j.indcrop.2010.10.022
    [28]
    WANG M, WANG F. Lignin: Catalytic scissoring of lignin into aryl monomers[J]. Advanced Materials, 2019, 31(50): 1901866. doi: 10.1002/adma.201901866
    [29]
    SUN Z, FRIDRICH B, DE SANTI A, et al. Bright side of lignin depolymerization: Toward new platform chemicals[J]. Chemical Reviews, 2018, 118(2): 614-678.
    [30]
    FIGUEIREDO P, LINTINEN K, HIRVONEN J T, et al. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications[J]. Progress in Materials Science, 2018, 93: 233-269.
    [31]
    XIONG F, HAN Y, WANG S, et al. Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly[J]. Industrial Crops and Products, 2017, 100: 146-152.
    [32]
    WEN J L, SUN S L, XUE B L, et al. Structural elucidation of inhomogeneous lignins from bamboo[J].International Journal of Biological Macromolecules, 2015, 77: 250-259.
    [33]
    RAJ A, DEVENDRA L P, SUKUMARAN R K. Comparative evaluation of laccase mediated oxidized and unoxidized lignin of sugarcane bagasse for the synthesis of lignin-based formaldehyde resin[J]. Industrial Crops and Products, 2020, 150: 112385.
    [34]
    BASBASAN A J R, HARARAK B, WINOTAPUN C, et al. Emerging challenges on viability and commercialization of lignin in biobased polymers for food packaging: A review[J]. Food Packaging and Shelf Life, 2022, 34: 100969. doi: 10.1016/j.fpsl.2022.100969
    [35]
    TOPUZ F, UYAR T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications[J]. Food Research International, 2020, 130: 108927.
    [36]
    HU X, LU C, TANG H, et al. Active food packaging made of biopolymer-based composites[J]. Materials (Basel), 2022, 16(1): 16010279.
    [37]
    CHEN Z, WAN C. Biological valorization strategies for converting lignin into fuels and chemicals[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 610-621.
    [38]
    袁振宏, 雷廷宙, 庄新姝, 等. 我国生物质能研究现状及未来发展趋势分析[J]. 太阳能, 2017(2): 12-19.

    YUAN Zhenhong, LEI Tingzhou, ZHUANG Xinshu, et al. The current research on biomass energy in China and the future development trend analysis[J]. Solar Energy, 2017(2): 12-19(in Chinese).
    [39]
    邢献军, 李涛, 马培勇, 等. 欧盟与中国生物质成型燃料产业发展现状对比[J]. 安徽科技, 2015(1): 38-41.

    XING Xianjun, LI Tao, MA Peiyong, et al. The European Union and the comparison between the present situation of the development of Chinese biomass fuel molding industry[J]. Anhui Science and Technology, 2015(1): 38-41(in Chinese).
    [40]
    吕豪豪, 刘玉学, 杨生茂, 等. 生物质炭化技术及其在农林废弃物资源化利用中的应用[J]. 浙江农业科学, 2015, 56(1): 19-22.

    LYU Haohao, LIU Yuxue, YANG Shengmao, et al. Biomass carbonization technology and its application in resource utilization of agricultural and forestry waste[J]. Zhejiang Agricultural Science, 2015, 56(1): 19-22(in Chinese).
    [41]
    SUN R C. Lignin source and structural characterization[J]. ChemSusChem, 2020, 13(7): 4385-4393.
    [42]
    NGUYEN L T, PHAN D P, SARWAR A, et al. Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion[J]. Industrial Crops and Products, 2021, 161: 113219. doi: 10.1016/j.indcrop.2020.113219
    [43]
    FU Y, XIAO Y, CHEN X, et al. Long-lasting UV-blocking mechanism of lignin: Origin and stabilization of semiquinone radicals[J]. Small Methods, 2024, 25: 2301783.
    [44]
    JIANG Y, WANG Z, ZHOU L, et al. Highly efficient and selective modification of lignin towards optically designable and multifunctional lignocellulose nanopaper for green light-management applications[J]. International Journal of Biological Macromolecules, 2022, 206: 264-276. doi: 10.1016/j.ijbiomac.2022.02.147
    [45]
    ZHANG Y, WEI Y, QIAN Y, et al. Lignocellulose enabled highly transparent nanopaper with tunable ultraviolet-blocking performance and superior durability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(46): 17033-17041.
    [46]
    LI X, ZHANG X, WANG N, et al. Range-broadening ultraviolet-blocking regulation of cellulose nanopaper via surface self-absorption with poly(methyl methacrylate)/avobenzone[J]. ACS Applied Polymer Materials, 2019, 1(11): 2981-2989. doi: 10.1021/acsapm.9b00686
    [47]
    SANI M A, AZIZI-LALABADI M, TAVASSOLI M, et al. Recent advances in the development of smart and active biodegradable packaging materials[J]. Nanomaterials (Basel), 2021, 11(5): 1331. doi: 10.3390/nano11051331
    [48]
    ZHANG N, LIU P, YI Y, et al. Application of polyvinyl acetate/lignin copolymer as bio-based coating material and its effects on paper properties[J]. Coatings, 2021, 11(2): 192. doi: 10.3390/coatings11020192
    [49]
    SIRVIÖ J A, ISMAIL M Y, ZHANG K, et al. Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties[J]. Journal of Materials Chemistry A, 2020, 8(16): 7935-7946. doi: 10.1039/C9TA13182E
    [50]
    WINESTRAND S, JÄRNSTRÖM L, JÖNSSONET L J, et al. Fractionated lignosulfonates for laccase-catalyzed oxygen-scavenging films and coatings[J]. Molecules, 2021, 26: 6322. doi: 10.3390/molecules26206322
    [51]
    LIU C, LUAN P C, LI Q, et al. Biopolymers derived from trees as sustainable multifunctional materials: A review[J]. Advanced Materials, 2021, 7: 2001654.
    [52]
    SZLISZKA E, CZUBA Z P, DOMINO M, et al. Ethanolic extract of propolis (EEP) enhances the apoptosis-inducing potential of TRAIL in cancer cells[J]. Molecules, 2009, 14(2): 738-754. doi: 10.3390/molecules14020738
    [53]
    WANG X, XIA Q, JING S, et al. Strong, hydrostable, and degradable straws based on cellulose-lignin reinforced composites[J]. Small, 2021, 17(18): e2008011. doi: 10.1002/smll.202008011
    [54]
    LIU C, LUAN P C, LI Q, et al. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative[J]. Matter, 2020, 3: 2066-2079. doi: 10.1016/j.matt.2020.10.004
    [55]
    JIANG B, CHEN C, LIANG Z, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement[J]. Advanced Functional Materials, 2019, 30(4): 1906307.
    [56]
    SINGH S S, ZAITOON A, SHARMA S, et al. Enhanced hydrophobic paper-sheet derived from Miscanthus X giganteus cellulose fibers coated with esterified lignin and cellulose acetate blend[J]. International Journal of Biological Macromolecules, 2022, 223(Pt A): 1243-1256.
    [57]
    HULT E L, ROPPONEN J, POPPIUS-LEVLIN K, et al. Enhancing the barrier properties of paper board by a novel lignin coating[J]. Industrial Crops and Products, 2013, 50: 694-700. doi: 10.1016/j.indcrop.2013.08.013
    [58]
    LAVRIC G, ZAMLJEN A, GRKMAN J J, et al. Organosolv lignin barrier paper coatings from waste biomass resources[J]. Polymers, 2021, 13(24): 4443. doi: 10.3390/polym13244443
    [59]
    NAIR S S, CHEN H, PENG Y, et al. Polylactic acid biocomposites reinforced with nanocellulose fibrils with high lignin content for improved mechanical, thermal, and barrier properties[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10058-10068.
    [60]
    TAYEB A H, TAJVIDI M, BOUSFIELD D. Paper-based oil barrier packaging using lignin-containing cellulose nanofibrils [J]. Molecules, 2020, 25(6): 1344. doi: 10.3390/molecules25061344
    [61]
    YI C, YUAN T, REN H, et al. Fabrication of food-safe, degradable and high-barrier air frying paper by chitosan, zein and LCNF coatings[J]. Cellulose, 2023, 30(4): 2441-2452. doi: 10.1007/s10570-022-05032-4
    [62]
    GHAFFARI S, ALIOFKHAZRAEI M, BARATI DARBAND G, et al. Review of superoleophobic surfaces: Evaluation, fabrication methods, and industrial applications[J]. Surfaces and Interfaces, 2019, 17: 100340. doi: 10.1016/j.surfin.2019.100340
    [63]
    MITTAG A, RAHMAN M M, HAFEZ I, et al. Development of lignin-containing cellulose nanofibrils coated paper-based filters for effective oil-water separation[J]. Membranes (Basel), 2022, 13(1): 1 doi: 10.3390/membranes13010001
    [64]
    KIM J Y, OH S, HWANG H, et al. Structural features and thermal degradation properties of various lignin macromolecules obtained from poplar wood (Populus albaglandulosa)[J]. Polymer Degradation and Stability, 2013, 98(9): 1671-1678. doi: 10.1016/j.polymdegradstab.2013.06.008
    [65]
    BERTELLA, LUTERBACHER, 钱孙逸豪, 等. 木质素功能化在新材料生产中的应用[J]. 腐植酸, 2023(4): 27-35.

    BERTELLA, LUTERBACHER, QIAN Sunyihao, et al. The application of lignin functionalization in the production of new materials[J]. Humic Acid, 2023(4): 27-35(in Chinese).
    [66]
    BREBU M, TAMMINEN T, SPIRIDON I. Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 531-539. doi: 10.1016/j.jaap.2013.05.016
    [67]
    SONG K, GANGULY I, EASTIN I, et al. Lignin-modified carbon nanotube/graphene hybrid coating as efficient flame retardant[J]. Journal of Molecular Sciences, 2017, 18(11): 2368. doi: 10.3390/ijms18112368
    [68]
    VÄNSKÄ E, VIHELÄ T, PERESIN M S, et al. Residual lignin inhibits thermal degradation of cellulosic fiber sheets[J]. Cellulose, 2015, 23(1): 199-212.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (265) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return