Design and processing of wear-resistant and ice-resistant PTFE surface
-
Abstract
The icing on the surface of the silo of the ice jet cleaning equipment often causes the equipment to shutdown for maintenance, but how to reduce the icing adhesion on the silo surface is a difficulty of current research. In this work, CO2 laser was used to etch polytetrafluoroethylene (PTFE) to obtain a superhydrophobic surface, and a rhombus support rib array structure was designed to improve the wear resistance of the superhydrophobic PTFE surface. CO2 laser etching could form a multi-layer staggered stacked fiber structure on the PTFE surface, and there was no obvious change in the chemical composition of the surface after laser etching. The superhydrophobic PTFE surface with contact angle of 164° and rolling angle of 4° can be obtained at laser scanning line spacing of 50 μm, scanning speed of 300 mm/s, and laser power of 9 W. The designed rhombus support rib array structure with crest angle of 30°, length of side of 3 mm and rib width of 0.05 mm can effectively improve the wear resistance of superhydrophobic PTFE surface. Even after being rubbed by sandpaper for 6 m, the superhydrophobic PTFE surface with rhombus support rib array structure can still maintain excellent superhydrophobicity, and the icing adhesion of it is only 50% of that of ordinary PTFE surface. The wear-resistant and ice-resistant PTFE surface is expected to be used in ice jet cleaning equipment.
-
-