Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
ZHANG Qingyun, HUANG Junchen, YANG Bing, et al. Configuration design and thermal properties of diamond reinforced graphite film/aluminum composite[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4344-4352. doi: 10.13801/j.cnki.fhclxb.20240025.001
Citation: ZHANG Qingyun, HUANG Junchen, YANG Bing, et al. Configuration design and thermal properties of diamond reinforced graphite film/aluminum composite[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4344-4352. doi: 10.13801/j.cnki.fhclxb.20240025.001

Configuration design and thermal properties of diamond reinforced graphite film/aluminum composite

doi: 10.13801/j.cnki.fhclxb.20240025.001
Funds:  Fund of Hunan Provincial Education Department (21B0468)
  • Received Date: 2023-11-03
  • Accepted Date: 2024-01-16
  • Rev Recd Date: 2024-01-15
  • Available Online: 2024-01-26
  • Publish Date: 2024-08-01
  • To improve the low longitudinal thermal conductivity of graphite film/aluminum composites, this study employed high-thermal diamond to penetrate the aluminum layer and establish a thermal conduction channel within the composites to effectively enhance their longitudinal thermal conductivity. To enhance the interface bonding between diamond and aluminum matrix. Tungsten coating was applied on the diamond surface using physical vapor deposition (PVD) technology. Subsequently, diamond-reinforced graphite film/aluminum composites were fabricated through fast hot pressing sintering (FHP) method. The influence of interfacial bonding and diamond volume fraction on the thermal conductivity of the composite were investigated. The results demonstrate that at a 10vol% volume fraction of W-coated diamond, the in-plane thermal conductivity reaches its peak value at 658 W/(m·K), which is 7% higher than that of an uncoated corundum reinforced composite. However, when the volume fraction of tungsten diamond plating exceeds 10vol%, the in-plane thermal conductivity shows a decreasing trend. The in-plane thermal conductivity is reduced to 535 W/(m·K) for composites with a high volume fraction of tungsten diamond coated (30vol%). Nevertheless, as the diamond volume fraction increases, more thermal conduction channels are formed within the composite leading to an increase in longitudinal thermal conductivity up to its highest value at 177 W/(m·K), which is 34% higher than that of uncoated diamond reinforced composites. The present study demonstrates that the incorporation of diamond thermal conduction channels between graphite film and aluminum effectively enhances the longitudinal thermal conductivity of composites.

     

  • loading
  • [1]
    王菁. 电子设备的散热技术分析[J]. 电子技术, 2022, 51(7): 184-185.

    WANG Jing. Analysis of heat dissipation technology of electronic equipment[J]. Electronic Technology, 2022, 51(7): 184-185(in Chinese).
    [2]
    MALLIK S, EKERE N, BEST C, et al. Investigation of thermal management materials for automotive electronic control units[J]. Applied Thermal Engineering, 2011, 31(2-3): 355-362. doi: 10.1016/j.applthermaleng.2010.09.023
    [3]
    陈贞睿, 刘超, 谢炎崇, 等. 高导热金属基复合材料的制备与研究进展[J]. 粉末冶金技术, 2022, 40(1): 40-52.

    CHEN Zhenrui, LIU Chao, XIE Yanchong, et al. Preparation and research process of high thermal conductivity metal matrix composites[J]. Powder Metallurgy Technology, 2022, 40(1): 40-52(in Chinese).
    [4]
    FENG C P, SUN K Y, JI J C, et al. 3D printable, form stable, flexible phase-change-based electronic packaging materials for thermal management[J]. Additive Manufacturing, 2023, 71: 103586. doi: 10.1016/j.addma.2023.103586
    [5]
    HUANG Y, OUYANG Q, GUO Q, et al. Graphite film/aluminum laminate conductivity for thermal management applications[J]. Materials & Design, 2016, 90: 508-515.
    [6]
    黄宇. 高导热石墨膜/铝复合材料的设计、制备与性能研究[D]. 上海: 上海交通大学, 2017.

    HUANG Yu. Design, fabrication and thermal properties of high thermal conductive graphite film/aluminum composites[D]. Shanghai: Shanghai Jiao Tong University, 2017(in Chinese).
    [7]
    孙铭. 石墨膜/Al-Mg-Si层状复合材料界面性质及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.

    SUN Ming. Research on interfacial properties, microstructure and properties of graphite film/Al-Mg-Si laminated composites[D]. Harbin: Harbin Institute of Technology, 2022(in Chinese).
    [8]
    CHANG J, ZHANG Q, LIN Y, et al. Layer by layer graphite film reinforced aluminum composites with an enhanced performance of thermal conduction in the thermal management applications[J]. Journal of Alloys and Compounds, 2018, 742: 601-609. doi: 10.1016/j.jallcom.2018.01.332
    [9]
    田聪. 石墨膜/铝导热复合基板的制备与散热应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    TIAN Cong. Preparation and application of heat dissipation of graphite film/aluminum thermal conductive substrates[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [10]
    宁越洋. 表面改性石墨铜/铝力学性能及导热率研究[D]. 武汉: 江汉大学, 2020.

    NING Yueyang. Study on mechanical properties and thermal conductivity of surface-modified graphite copper aluminum[D] Wuhan: Jianghan University, 2020(in Chinese).
    [11]
    佟兴宇. 微波改性石墨膜/铝层状复合材料的显微组织与热性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    TONG Xingyu. Microstruture and thermal properties of microwave modified graphite film/aluminum composites[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [12]
    PENG X, HUANG Y, HAN X, et al. High volume fraction of copper coated graphite flake/nitrogen doped carbon fiber reinforced aluminum matrix composites[J]. Journal of Alloys and Compounds, 2020, 822: 153584. doi: 10.1016/j.jallcom.2019.153584
    [13]
    INAGAKI M, KABURAGI Y, HISHIYAMA Y. Thermal management material: Graphite[J]. Advanced Engineering Materials, 2014, 16(5): 494-506. doi: 10.1002/adem.201300418
    [14]
    LIU Q, HE X B, REN S B, et al. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating[J]. Journal of Alloys and Compounds, 2014, 587: 255-259. doi: 10.1016/j.jallcom.2013.09.207
    [15]
    DOO J H, HA M Y, MIN J K, et al. Theoretical prediction of longitudinal heat conduction effect in cross-corrugated heat exchanger[J]. International Journal of Heat and Mass Transfer, 2012, 55(15-16): 4129-4138. doi: 10.1016/j.ijheatmasstransfer.2012.03.054
    [16]
    LIN Q H, HE S, LIU Q Q, et al. Construction of a 3D interconnected boron nitride nanosheets in a PDMS matrix for high thermal conductivity and high deformability[J]. Composites Science and Technology, 2022, 226: 109528. doi: 10.1016/j.compscitech.2022.109528
    [17]
    YANG J, QI G Q, LIU Y, et al. Hybrid graphene aerogels/phase change material composites: Thermal conductivity, shape-stabilization and light-to-thermal energy storage[J]. Carbon, 2016, 100: 693-702. doi: 10.1016/j.carbon.2016.01.063
    [18]
    PINES M L, BRUCK H A. Pressureless sintering of particle-reinforced metal-ceramic composites for functionally graded materials: Part I. Porosity reduction models[J]. Acta Materialia, 2006, 54(6): 1457-1465. doi: 10.1016/j.actamat.2005.10.060
    [19]
    GU Q, PENG J, XU L, et al. Preparation of Ti-coated diamond particles by microwave heating[J]. Applied Surface Science, 2016, 390: 909-916. doi: 10.1016/j.apsusc.2016.08.168
    [20]
    YANG W, PENG K, ZHOU L, et al. Finite element simulation and experimental investigation on thermal conductivity of diamond/aluminium composites with imperfect interface[J]. Computational Materials Science, 2014, 83: 375-380. doi: 10.1016/j.commatsci.2013.11.059
    [21]
    代晨. W涂层对金刚石增强铝基复合材料组织与性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    DAI Chen. Microstructure and properties of tungsten coated diamond/aluminum composites[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [22]
    ZHOU H, RAN M, LI Y, et al. Improvement of thermal conductivity of diamond/Al composites by optimization of liquid-solid separation process[J]. Journal of Materials Processing Technology, 2021, 297: 117267. doi: 10.1016/j.jmatprotec.2021.117267
    [23]
    ZHANG C, CAI Z, WANG R, et al. Microstructure and thermal properties of Al/W-coated diamond composites prepared by powder metallurgy[J]. Materials & Design, 2016, 95: 39-47.
    [24]
    XIN L, TIAN X, YANG W, et al. Enhanced stability of the diamond/Al composites by W coatings prepared by the magnetron sputtering method[J]. Journal of Alloys and Compounds, 2018, 763: 305-313. doi: 10.1016/j.jallcom.2018.05.310
    [25]
    BERGSTROM D B, PETROV I, GREENE J E. Al/Ti xW1− x metal/diffusion-barrier bilayers: Interfacial reaction pathways and kinetics during annealing[J]. Journal of Applied Physics, 1997, 82(5): 2312-2322. doi: 10.1063/1.366039
    [26]
    WEBER L, TAVANGAR R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X=Cr, B) diamond composites[J]. Scripta Materialia, 2007, 57(11): 988-991. doi: 10.1016/j.scriptamat.2007.08.007
    [27]
    CHE Z, ZHANG Y, LI J, et al. Nucleation and growth mechanisms of interfacial Al4C3 in Al/diamond composites[J]. Journal of Alloys and Compounds, 2016, 657: 81-89. doi: 10.1016/j.jallcom.2015.10.075
    [28]
    ZHU P, ZHANG Q, QU S, et al. Effect of interface structure on thermal conductivity and stability of diamond/aluminum composites[J]. Composites Part A: Applied Science and Manufacturing, 2022, 162: 107161. doi: 10.1016/j.compositesa.2022.107161
    [29]
    ZHANG C, WANG R, CAI Z, et al. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J]. Surface and Coatings Technology, 2015, 277: 299-307. doi: 10.1016/j.surfcoat.2015.07.059
    [30]
    LEE M T, FU M H, WU J L, et al. Thermal properties of diamond/Ag composites fabricated by eletroless silver plating[J]. Diamond and Related Materials, 2011, 20(2): 130-133. doi: 10.1016/j.diamond.2010.11.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (251) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return