Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
LI Xiang, ZHAO Xianhang, ZHONG Hua, et al. Inter-laminar stress modeling and validation on multi-layer composite cylinders under thermal loading[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4398-4407. doi: 10.13801/j.cnki.fhclxb.20240018.002
Citation: LI Xiang, ZHAO Xianhang, ZHONG Hua, et al. Inter-laminar stress modeling and validation on multi-layer composite cylinders under thermal loading[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4398-4407. doi: 10.13801/j.cnki.fhclxb.20240018.002

Inter-laminar stress modeling and validation on multi-layer composite cylinders under thermal loading

doi: 10.13801/j.cnki.fhclxb.20240018.002
Funds:  National Natural Science Foundation of China (NSFC) Young Scientists Fund Project (12205263)
  • Received Date: 2023-11-02
  • Accepted Date: 2023-12-29
  • Rev Recd Date: 2023-12-27
  • Available Online: 2024-01-19
  • Publish Date: 2024-08-01
  • The inter-laminar stress in multi-layer composite cylindrical structures can cause internal delamination, structural instability, etc. It is necessary to study the internal stress formation mechanism. An analytical model for prediction of the inter-laminar stress in multi-layer composite cylinders subjected to thermal loading was developed based on an anisotropic constitutive model and the plane stress assumption. The analytical model was validated by means of finite element analyses and a thermal expansion experiment performed on a composite cylinder. Using this validated model, the inter-laminar stress between layers and the thermal expansion behavior were investigated. Results show that the special geometric constraint of the cylinder itself plays an important role in the residual stress development. The thermal expansion behavior in the cylinders is much different compared to that in planer laminated composites. Due to the difference of modulus and coefficient of thermal expansion along hoop and radial direction, a significant inter-laminar tensile stress will generate during cooling down process. Furthermore, the hoop thermal expansion deformation shows an evident increasing trend from the inner layer to the outer layer. The hoop thermal expansion deformation in the inner layer is much smaller than that of the composite. With the increment of the cylinder thickness, the inter-laminar tensile stress, and the difference in coefficient of thermal expansion between inner layer and outermost layer increase. The developed model could be useful to disclose the stress-induced inter-laminar crack and optimize stress distribution in multi-layer composite cylinders.

     

  • loading
  • [1]
    王青于, 杨熙, 彭宗仁, 等. 应用三维电磁-热-流固耦合场分析方法计算换流变压器干式套管的温度场分布[J]. 中国电机工程学报, 2016, 36(22): 6269-6275.

    WANG Qingyu, YANG Xi, PENG Zongren, et al. 3D coupled electromagnetic-thermal-fluid method for computation of temperature field of converter transformer RIP bushings[J]. Proceedings of the CSEE, 2016, 36(22): 6269-6275(in Chinese).
    [2]
    KIM Y K, WHITE S R. Cure-dependent viscoelastic residual stress analysis of filament-wound composite cylinders[J]. Mechanics of Composite Materials and Structures, 1998, 5: 327-354. doi: 10.1080/10759419808945905
    [3]
    VOYIADJIS G Z, HARTLEY C S. Residual-stress determination of concentric layers of cylindrically orthotropic materials[J]. Experimental Mechanics, 1987, 27(3): 290-297.
    [4]
    KANG C, LIU Z, SHIRINZADEH B, et al. Multiparametric sensitivity analysis of multilayered filament-wound cylinder under internal pressure[J]. Mechanics of Advanced Materials and Structures, 2022, 29(8): 1172-1183. doi: 10.1080/15376494.2020.1811435
    [5]
    郭凯特, 文利华, 校金友, 等. 多角度纤维缠绕复合材料圆筒张力设计[J]. 固体火箭技术, 2020, 43(4): 458-467.

    GUO Kaite, WEN Lihua, XIAO Jinyou, et al. Tension design for composite cylinder with multi-angle layers[J]. Journal of Solid Rocket Technology, 2020, 43(4): 458-467(in Chinese).
    [6]
    EDULJEE R F, GILLESPIE JR J W. Elastic response of post- and in situ consolidated laminated cylinders[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27A: 437-446.
    [7]
    VEDELD K, SOLLUND H A. Stresses in heated pressurized multi-layer cylinders in generalized plane strain conditions[J]. International Journal of Pressure Vessels and Piping, 2014, 120-121: 27-35. doi: 10.1016/j.ijpvp.2014.04.002
    [8]
    SOLLUNDH A, VEDELD K, HELLESLAND J. Efficient analytical solutions for heated and pressurized multi-layer cylinders[J]. Ocean Engineering, 2014, 92: 285-295. doi: 10.1016/j.oceaneng.2014.10.003
    [9]
    YEO W H, PURBOLAKSONO J, ALIABADI M H, et al. Exact solution for stress/displacements in a multilayered hollow cylinder under thermo-mechanical loading[J]. International Journal of Pressure Vessels and Piping, 2017, 151: 45-53. doi: 10.1016/j.ijpvp.2017.01.003
    [10]
    KANG C, SHI Y, DENG B, et al. Determination of residual stress and design of process parameters for composite cylinder in filament winding[J]. Advances in Materials Science and Engineering, 2018, 2018(1): 1-11.
    [11]
    李博, 熊超, 殷军辉, 等. 多角度交替缠绕复合圆筒的剩余应力算法及水压试验[J]. 复合材料学报, 2018, 35(6): 1452-1463.

    LI Bo, XIONG Chao, YIN Junhui, et al. Residual stress algorithm for composite cylinder with alternate multi-angle winding layers and water-pressure test[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 1452-1463(in Chinese).
    [12]
    郭章新, 韩小平, 李金强, 等. 纤维缠绕复合材料固化过程残余应力/应变的三维数值模拟[J]. 复合材料学报, 2014, 31(4): 1006-1012.

    GUO Zhangxin, HAN Xiaoping, LI Jinqiang, et al. Three-dimensional numerical simulation of residual stress/strain for filament-wound composites during process[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 1006-1012(in Chinese).
    [13]
    TZENG, CHIEN L S. Viscoelastic analysis of thick-walled filament-wound composite cylinders with elevated temperatures[J]. AIAA Journal, 1996, 34(7): 1526-1529. doi: 10.2514/3.13264
    [14]
    CALIUS E P, LEE S Y, SPRINGER G S. Filament winding cylinders: I. Process model[J]. Journal of Composite Materials, 1990, 24: 1270-1298. doi: 10.1177/002199839002401202
    [15]
    CALIUS E P, LEE S Y, SPRINGER G S. Filament winding cylinders: II. Validation of the process model[J]. Journal of Composite Materials, 1990, 24: 1299-1343. doi: 10.1177/002199839002401203
    [16]
    KRYSIAK P, BLACHUT A, KALETA J. Theoretical and experimental analysis of inter-layer stresses in filament-wound cylindrical composite structures[J]. Materials, 2021, 14(7037): 1-25.
    [17]
    BOWER A F. Applied mechanics of solids[M]. Taylor & Francis: CRC Press, 2009: 81-82.
    [18]
    ASTM International. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039[S]. West Conshohocken: ASTM International, 2014.
    [19]
    ASTM International. Standard test method for linear thermal expansion of solid materials by thermomechanical analysis: ASTM E831[S]. West Conshohocken: ASTM International, 2019.
    [20]
    TANG K, SHA L, LI Y J, et al. Measurement of thermal expansion at low temperatures using the strain gage method[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2014, 15(5): 323-330.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (326) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return