Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
WAN Aoshuang, ZHU Feiyang, YUN Xinyao, et al. Investigation on numerical analysis method of fatigue delamination damage of plane woven composites[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4418-4433. doi: 10.13801/j.cnki.fhclxb.20240015.002
Citation: WAN Aoshuang, ZHU Feiyang, YUN Xinyao, et al. Investigation on numerical analysis method of fatigue delamination damage of plane woven composites[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4418-4433. doi: 10.13801/j.cnki.fhclxb.20240015.002

Investigation on numerical analysis method of fatigue delamination damage of plane woven composites

doi: 10.13801/j.cnki.fhclxb.20240015.002
Funds:  National Natural Science Foundations of China (52205174); Natural Science Foundations of Tianjin (21JCQNJC00880); Scientific Research Project of Tianjin Education Commission (2021KJ050); Fundamental Research Funds for the Central Universities (3122021042)
  • Received Date: 2023-10-23
  • Accepted Date: 2024-01-12
  • Rev Recd Date: 2023-12-26
  • Available Online: 2024-01-15
  • Publish Date: 2024-08-01
  • Based on bilinear constitutive relationship, a cohesive model considering fatigue damage was established. Integrating with finite element analysis technology, the numerical analysis method of delamination propagation behavior of composite laminates was developed to simulate the mode II delamination propagation behavior of plane woven composite laminates under static and fatigue loading. The simulated load-displacement curve under quasi-static loading has good agreement with the experimental results. The simulated delamination propagation rate-strain energy release rate curve under fatigue loading is also in good agreement with the experimental results. Thus, the cohesive model considering fatigue damage has been validated. On this basis, the fatigue failure criteria for plane woven composites were established. Then the residual life prediction method of plane woven composite laminates with initial delamination damage was developed by integrating with the intralaminar progressive fatigue damage model. Using the developed method, the residual life and fatigue damage propagation of laminates with initial delamination damage were predicted, showing good correlation with the experimental results. In addition, the simulation results indicate that the fatigue damage initiates from the initial delamination damage which then propagates to the edges. The fatigue damage in both warp and weft directions appear early within the two layers of (0°/90°) adjacent to the initial delamination damage. And more damage occurs within the (0°/90°) layers than the (±45°) layers in general. Finally, the (0°/90°) layers show warp damage dominated failure mode while the (±45°) layers show weft damage dominated failure mode, and large area of damage appear at all the interlaminar interfaces.

     

  • loading
  • [1]
    杨乃宾, 章怡宁. 复合材料飞机结构设计[M]. 北京: 航空工业出版社, 2003: 1-9.

    YANG Naibin, ZHANG Yining. Composite aircraft structure design[M]. Beijing: Aviation Industry Press, 2003: 1-9 (in Chinese).
    [2]
    MOLENT L, HADDAD A. A critical review of available composite damage growth test data under fatigue loading and implications for aircraft sustainment[J]. Composite Structures, 2020, 232: 111568. doi: 10.1016/j.compstruct.2019.111568
    [3]
    程小全, 康炘蒙, 邹健, 等. 平面编织复合材料层合板低速冲击后的拉伸性能[J]. 复合材料学报, 2008, 25(5): 163-168. doi: 10.3321/j.issn:1000-3851.2008.05.027

    CHENG Xiaoquan, KANG Xinmeng, ZOU Jian, et al. Tensile properties of plane woven composite laminates after low velocity impact[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 163-168(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.027
    [4]
    SHAO M Y, CAI D A, YU Q H, et al. On mechanical properties of double-sided-loop 2D woven laminated composites[J]. Composite Structures, 2023, 312: 116874. doi: 10.1016/j.compstruct.2023.116874
    [5]
    郑锡涛, 叶天麒. 美国纺织复合材料在航空结构上的应用研究(一)[J]. 航空工程与维修, 2001(5): 40-42.

    ZHENG Xitao, YE Tianqi. Textile composite applications to airframe structures in USA (I)[J]. Aviation Engineering, 2001(5): 40-42(in Chinese).
    [6]
    郑锡涛, 杨胜春, 叶天麒. 美国纺织复合材料在航空结构上的应用研究(二)[J]. 航空工程与维修, 2001(6): 40-42.

    ZHENG Xitao, YANG Shengchun, YE Tianqi. Textile composite applications to airframe structures in USA (II)[J]. Aviation Engineering, 2001(6): 40-42(in Chinese).
    [7]
    果立成, 廖锋, 李志兴, 等. 机织复合材料损伤演化研究进展[J]. 中国科学: 技术科学, 2020, 50(7): 876-896. doi: 10.1360/SST-2020-0123

    GUO Licheng, LIAO Feng, LI Zhixing, et al. Research progress in damage evolution of woven composites[J]. Scientia Sinica Technologica, 2020, 50(7): 876-896(in Chinese). doi: 10.1360/SST-2020-0123
    [8]
    YAO L J, ALDERLIESTEN R, ZHAO M Y, et al. Bridging effect on mode I fatigue delamination behavior in composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2014, 63: 103-109. doi: 10.1016/j.compositesa.2014.04.007
    [9]
    YAO L J, SUN Y, GUO L C, et al. Mode I fatigue delamination growth with fibre bridging in multidirectional composite laminates[J]. Engineering Fracture Mechanics, 2017, 189: 221-231.
    [10]
    YAO L J, SUN Y, ZHAO M Y, et al. Stress ratio dependence of fibre bridging significance in mode I fatigue delamination growth of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 65-74. doi: 10.1016/j.compositesa.2016.11.030
    [11]
    GONG Y, ZHANG B, HALLETT S R. Delamination migration in multidirectional composite laminates under mode I quasi-static and fatigue loading[J]. Composite Structures, 2018, 189: 160-176. doi: 10.1016/j.compstruct.2018.01.074
    [12]
    PENG L, ZHANG J Y, ZHAO L B, et al. Mode I delamination growth of multidirectional composite laminates under fatigue loading[J]. Journal of Composite Materials, 2011, 45(10): 1077-1090. doi: 10.1177/0021998310385029
    [13]
    ANDROUIN G, MICHEL L, MAILLET I, et al. Characterization of fatigue delamination growth under mode I and II: Effects of load ratio and load history[J]. Engineering Fracture Mechanics, 2018, 203: 172-185. doi: 10.1016/j.engfracmech.2018.06.030
    [14]
    KHUDAIRI O A, HADAVINIA H, WAGGOTT A, et al. Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates[J]. Materials and Design, 2015, 66: 93-102. doi: 10.1016/j.matdes.2014.10.038
    [15]
    云新尧, 梁朝虎, 宋伟科. 斜纹编织碳纤维/环氧树脂复合材料Ⅱ型分层性能及损伤演化表征[J]. 复合材料学报, 2020, 37(10): 2452-2462.

    YUN Xinyao, LIANG Chaohu, SONG Weike. Mode II delamination property and damage evolution characterization of twill woven carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2452-2462(in Chinese).
    [16]
    BIENIAS J, DADEJ K. Fatigue delamination growth of carbon and glass reinforced fiber metal laminates in fracture mode II[J]. International Journal of Fatigue, 2020, 130: 105267. doi: 10.1016/j.ijfatigue.2019.105267
    [17]
    COLOMBO C, VERGANI L. Influence of delamination on fatigue properties of a fibreglass composite[J]. Composite Structures, 2014, 107(1): 325-333.
    [18]
    COLOMBO C, BHUJANGRAO D T, LIBONATI F, et al. Effect of delamination on the fatigue life of GFRP: A thermographic and numerical study[J]. Composite Structures, 2019, 218: 152-161.
    [19]
    陈群志, 关志东, 王进, 等. 分层缺陷对复合材料结构疲劳寿命影响研究[J]. 机械强度, 2004(26): 121-123.

    CHEN Qunzhi, GUAN Zhidong, WANG Jin, et al. Study on influence of delamination flaw on fatigue life of composite structures[J]. Journal of Mechanical Strength, 2004(26): 121-123(in Chinese).
    [20]
    REIS P N B, FERREIRA J A M, ANTUNES F V, et al. Effect of interlayer delamination on mechanical behavior of carbon/epoxy laminates[J]. Journal of Composite Materials, 2009, 43(43): 2609-2621.
    [21]
    WAN A S, XIONG J J, XU Y G. Fatigue life prediction of woven composite laminates with initial delamination[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43: 2130-2146.
    [22]
    PASCOE J A, RANS C D, BENEDICTUS R. Characterizing fatigue delamination growth behaviour using specimens with multiple delaminations: The effect of unequal delamination lengths[J]. Engineering Fracture Mechanics, 2013, 109: 150-160. doi: 10.1016/j.engfracmech.2013.05.015
    [23]
    DAVILA C G, BISAGNI C. Fatigue life and damage tolerance of postbuckled composite stiffened structures with initial delamination[J]. Composite Structures, 2017, 161: 73-84. doi: 10.1016/j.compstruct.2016.11.033
    [24]
    RAIMONDO A, DOESBURG S A, BISAGNI C. Numerical study of quasi-static and fatigue delamination growth in a post-buckled composite stiffened panel[J]. Composites Part B: Engineering, 2020, 182: 107589. doi: 10.1016/j.compositesb.2019.107589
    [25]
    TEIMOURI F, RARANI M H, ABOUTALEBI F H. An XFEM-VCCT coupled approach for modeling mode I fatigue delamination in composite laminates under high cycle loading[J]. Engineering Fracture Mechanics, 2021, 249: 107760. doi: 10.1016/j.engfracmech.2021.107760
    [26]
    RAIMONDO A, BISAGNI C. Fatigue analysis of a post-buckled composite single-stringer specimen taking into account the local stress ratio[J]. Composites Part B: Engineering, 2020, 193: 108000. doi: 10.1016/j.compositesb.2020.108000
    [27]
    HOSSEINI-TOUDESHKY H, GOODARZI M S, MOHAMMADI B. Multiple delaminations growth in composite laminates under compressive cyclic loading in post-buckling[J]. Applied Mechanics and Materials, 2012, 225: 195-200. doi: 10.4028/www.scientific.net/AMM.225.195
    [28]
    TAO C C, QIU J H, YAO W X, et al. A novel method for fatigue delamination simulation in composite laminates[J]. Composites Science and Technology, 2016, 128: 104-115. doi: 10.1016/j.compscitech.2016.03.016
    [29]
    OLIVEIRA L A, DONADON M V. A cohesive zone model to predict fatigue-driven delamination in composites[J]. Engineering Fracture Mechanics, 2020, 235: 107124. doi: 10.1016/j.engfracmech.2020.107124
    [30]
    PEERLINGS R H J, BREKELMANS W A M, BORST R, et al. Gradient-enhanced damage modelling of high-cycle fatigue[J]. International Journal for Numerical Methods in Engineering, 2000, 49(12): 1547-1569. doi: 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D
    [31]
    NGUYEN O, REPETTO E A, RADOVITZKY R A. A cohesive model of fatigue crack growth[J]. International Journal of Fracture, 2001, 110: 351-369. doi: 10.1023/A:1010839522926
    [32]
    MAITI S, GEUBELLE P H. A cohesive model for fatigue failure of polymers[J]. Engineering Fracture Mechanics, 2005, 72(5): 691-708. doi: 10.1016/j.engfracmech.2004.06.005
    [33]
    DAVILA C G. From S-N to the Paris law with a new mixed-mode cohesive fatigue model for delamination in composites[J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102499. doi: 10.1016/j.tafmec.2020.102499
    [34]
    RAD A A, MASHAYEKHI M, MEER F P V D, et al. A two-scale damage model for high cycle fatigue delamination in laminated composites[J]. Composites Science and Technology, 2015, 120: 32-38. doi: 10.1016/j.compscitech.2015.10.010
    [35]
    ZHU M, GORBATIKH L, LOMOV S V. An incremental-onset model for fatigue delamination propagation in composite laminates[J]. Composites Science and Technology, 2020, 200(3): 108394.
    [36]
    李顶河, 李梁轶, 郭巧荣, 等. 基于离散损伤模型的复合材料双悬臂梁分层疲劳扩展分析[J]. 复合材料学报, 2022, 39(7): 3603-3614.

    LI Dinghe, LI Liangyi, GUO Qiaorong, et al. Fatigue delamination analysis of composite double cantilever beams based on discrete damage zone model[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3603-3614(in Chinese).
    [37]
    BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56: 439-449. doi: 10.1016/0266-3538(96)00005-X
    [38]
    ASTM. Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905[S]. West Conshohocken: ASTM, 2019.
    [39]
    云新尧. 复合材料II型层间开裂强度试验与模型表征技术研究[D]. 北京: 北京航空航天大学, 2015.

    YUN Xinyao. Mode II delamination resistance tests and characterization models of composites[D]. Beijing: Beihang University, 2015(in Chinese).
    [40]
    WAN A S, LI D H, LU P C. Three-scale modeling and probabilistic progressive damage analysis of woven composite laminates[J]. Mechanics of Advanced Materials and Structures, 2024, 31(3): 602-618.
    [41]
    CHENG Z Q, XIONG J J. Progressive damage behaviors of woven composite laminates subjected to LVI, TAI and CAI[J]. Chinese Journal of Aeronautics, 2020, 33(10): 2807-2823. doi: 10.1016/j.cja.2019.12.015
    [42]
    LIU H, QI G, RENAUD G, et al. Application of the effective crack length method to model delamination of unidirectional composite laminates under mode II shear loadings[J]. Composites Part C: Open Access, 2023, 12: 100401. doi: 10.1016/j.jcomc.2023.100401
    [43]
    YAN X Q, GUO X M, GAO Y F, et al. Mode-II fracture toughness and crack propagation of pultruded carbon fiber-epoxy composites[J]. Engineering Fracture Mechanics, 2023, 279: 109042. doi: 10.1016/j.engfracmech.2022.109042
    [44]
    GONG Y, XIA K X, WANG Y N, et al. A semi-analytical model for the mode II fracture toughness of multidirectional composite laminates[J]. Thin-Walled Structures, 2023, 182: 110235. doi: 10.1016/j.tws.2022.110235
    [45]
    SOYUGÜZEL T, MECITOGLU Z, KAFTELEN-ODABASI H. Experimental and numerical investigation on the mode I and mode II interlaminar fracture toughness of nitrogen-doped reduced graphene oxide reinforced composites[J]. Theoretical and Applied Fracture Mechanics, 2023, 128: 104103. doi: 10.1016/j.tafmec.2023.104103
    [46]
    LIU C Q, GONG Y, GONG Y K, et al. Mode II fatigue delamination behaviour of composite multidirectional laminates and the stress ratio effect[J]. Engineering Fracture Mechanics, 2022, 264: 108321. doi: 10.1016/j.engfracmech.2022.108321
    [47]
    ADAMOS L, TSOKANAS P, LOUTAS T. An experimental study of the interfacial fracture behavior of titanium/CFRP adhesive joints under mode I and mode II fatigue[J]. International Journal of Fatigue, 2020, 136: 105586. doi: 10.1016/j.ijfatigue.2020.105586
    [48]
    HASHIN Z. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7: 448-464. doi: 10.1177/002199837300700404
    [49]
    CHENG Z Q, TAN W, XIONG J J. Progressive damage modelling and fatigue life prediction of plain-weave composite laminates with low-velocity impact damage[J]. Composite Structures, 2021, 273(1): 114262.
    [50]
    CHENG Z Q, TAN W, XIONG J J. Modelling pre-fatigue, low-velocity impact and post-impact fatigue behaviours of composite helicopter tail structures under multipoint coordinated loading spectrum[J]. Thin-Walled Structures, 2022, 176: 109349. doi: 10.1016/j.tws.2022.109349
    [51]
    BIENIAS J, DADEJ K, SUROWSKA B. Interlaminar fracture toughness of glass and carbon reinforced multidirectional fiber metal laminates[J]. Engineering Fracture Mechanics, 2017, 175: 127-145. doi: 10.1016/j.engfracmech.2017.02.007
    [52]
    YANG F, YI F J, XIE W H. The role of ply angle in interlaminar delamination properties of CFRP laminates[J]. Mechanics of Materials, 2021, 160: 103928. doi: 10.1016/j.mechmat.2021.103928
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views (337) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return