Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
ZHENG Yulong, LIN Hongru, LU Chunhua, et al. Experimental and mechanism exploration of alkali-silica reaction inhibition by microbial mineralization[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4225-4235. doi: 10.13801/j.cnki.fhclxb.20240013.001
Citation: ZHENG Yulong, LIN Hongru, LU Chunhua, et al. Experimental and mechanism exploration of alkali-silica reaction inhibition by microbial mineralization[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4225-4235. doi: 10.13801/j.cnki.fhclxb.20240013.001

Experimental and mechanism exploration of alkali-silica reaction inhibition by microbial mineralization

doi: 10.13801/j.cnki.fhclxb.20240013.001
Funds:  National Natural Science Foundation of China (52108147; 51878319); Jiangsu Planned Projects for Postdoctoral Research Funds (2020Z350); Senior Talent Foundation of Jiangsu University (20JDG19)
  • Received Date: 2023-10-20
  • Accepted Date: 2024-01-05
  • Rev Recd Date: 2023-12-23
  • Available Online: 2024-01-15
  • Publish Date: 2024-08-01
  • Alkali-silica reaction (ASR) is a reaction between alkaline pore solutions in concrete and reactive non-crystalline SiO2 in aggregates, which leads to expansion and cracking of the concrete, and degradation of mechanical properties. In this study, based on the microbial induced calcium carbonate precipitation (MICP) technique of Bacillus pasteurus, various treatment frequencies and methods, including surface treatments of potentially active aggregates and mortar bars made by them, to comprehensively evaluate the inhibition law and mechanism of MICP on ASR. The results showed that the MICP treatment could form a dense CaCO3 layer with adhesive effect on the surface of aggregates and mortar bars, thus preventing the intrusion of alkaline ions and water, and the inhibiting effect became stronger with the treatment numbers. Compared with the control group, the maximum increase in mechanical properties of 13.8%, and the decrease in expansion rate of 35% were observed when the mortar bars were treated. When treating the aggregate, the mechanical properties were improved by 25.3% and the expansion rate was reduced by 59.6% with a better inhibition effect, as the surface CaCO3 layer could simultaneously block the alkaline ions and water existing in the pore solution and invading from outside. Microstructural and compositional analyses showed that the proportion of Si and Na atoms on the aggregate surface decreased by 69.6% and 88.9%, respectively, after treatment, indicating a significant reduction in the ASR gel.

     

  • loading
  • [1]
    AHMED H, ZAHEDI A, SANCHEZ L F M, et al. Condition assessment of ASR-affected reinforced concrete columns after nearly 20 years in service[J]. Construction and Building Materials, 2022, 347: 128570. doi: 10.1016/j.conbuildmat.2022.128570
    [2]
    刘玮, 张玉, 李珠, 等. 膨胀珍珠岩内养护混凝土抗压强度增长机制及数学模型的建立[J]. 复合材料学报, 2022, 39(11): 5423-5435. doi: 10.13801/j.cnki.fhclxb.20210930.001

    LIU Wei, ZHANG Yu, LI Zhu, et al. Growth mechanism of the compressive strength of expanded perlite internal curing concrete and establishment of mathematical model[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5423-5435(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210930.001
    [3]
    LU C H, BU S Z, ZHENG Y L, et al. Deterioration of concrete mechanical properties and fracture of steel bars caused by alkali-silica reaction: A review[J]. Structures, 2022, 35: 893-902.
    [4]
    BARRETO SANTOS M, DE BRITO J, SANTOS SILVA A. A review on alkali-silica reaction evolution in recycled aggregate concrete[J]. Materials, 2020, 13(11): 2625. doi: 10.3390/ma13112625
    [5]
    李小伟, 曹旗. FRP配筋海水珊瑚骨料混凝土材料及构件力学性能研究进展[J]. 复合材料学报, 2022, 39(3): 926-941.

    LI Xiaowei, CAO Qi. Research progress on mechanical properties of FRP reinforced seawater coral aggregate concrete materials and structural components[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 926-941(in Chinese).
    [6]
    王兴国, 姜茂林, 陈旭, 等. 不同预浸骨料-PVA纤维对再生混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(3): 1205-1214.

    WANG Xingguo, JIANG Maolin, CHEN Xu, et al. Effect of different pre-soaked aggregate-PVA fiber on the mechanical properties of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1205-1214(in Chinese).
    [7]
    鲍玖文, 李树国, 张鹏, 等. 再生粗骨料硅烷浸渍处理对混凝土介质传输性能的影响[J]. 复合材料学报, 2020, 37(10): 2602-2609.

    BAO Jiuwen, LI Shuguo, ZHANG Peng, et al. Effect of recycled coarse aggregate after strengthening by silane impregnation on mass transport of concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2602-2609(in Chinese).
    [8]
    DE SOUZA D J, SANCHEZ L F M. Evaluating the efficiency of SCMs to avoid or mitigate ASR-induced expansion and deterioration through a multi-level assessment[J]. Cement and Concrete Research, 2023, 173: 107262. doi: 10.1016/j.cemconres.2023.107262
    [9]
    FANIJO E O, KASSEM E, IBRAHIM A. ASR mitigation using binary and ternary blends with waste glass powder[J]. Construction and Building Materials, 2021, 280: 122425. doi: 10.1016/j.conbuildmat.2021.122425
    [10]
    TAPAS M J, THOMAS P, VESSALAS K, et al. Comparative study of the efficacy of fly ash and reactive aggregate powders in mitigating alkali-silica reaction[J]. Journal of Building Engineering, 2023, 63: 105571. doi: 10.1016/j.jobe.2022.105571
    [11]
    ABBAS S, SHARIF A, AHMED A, et al. Prospective of sugarcane bagasse ash for controlling the alkali-silica reaction in concrete incorporating reactive aggregates[J]. Structural Concrete, 2020, 21(2): 781-793. doi: 10.1002/suco.201900284
    [12]
    高鹏, 王永博, 薛刚, 等. 橡胶粉和硅灰对碱硅酸反应的抑制作用[J]. 建筑材料学报, 2023, 26(4): 429-436.

    GAO Peng, WANG Yongbo, XUE Gang, et al. Influence of waste rubber powder, silica fume and binary blends with them on mitigating alkali-silica reaction (ASR) [J]. Journal of Building Materials, 2023, 26(4): 429-436(in Chinese).
    [13]
    万聪聪, 姜天华. 高性能地聚物混凝土早期收缩特性[J]. 复合材料学报, 2024, 41(2): 952-964.

    WAN Congcong, JIANG Tianhua. Early shrinkage characteristics of high performance geopolymer concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 952-964(in Chinese).
    [14]
    胡明玉, 陈露璐, 郑江, 等. 粉煤灰和抛光渣抑制碱硅酸反应及其机理研究[J]. 建筑材料学报, 2020, 23(4): 739-747.

    HU Mingyu, CHEN Lulu, ZHENG Jiang, et al. Mechanism of fly ash and ceramic polishing powder on inhibition alkali-silica reaction[J]. Journal of Building Materials, 2020, 23(4): 739-747(in Chinese).
    [15]
    KANWAL M, KHUSHNOOD R A, ADNAN F, et al. Assessment of the MICP potential and corrosion inhibition of steel bars by biofilm forming bacteria in corrosive environment[J]. Cement and Concrete Composites, 2023, 137: 104937. doi: 10.1016/j.cemconcomp.2023.104937
    [16]
    QIAN C X, WANG J Y, WANG R X, et al. Corrosion protection of cement-based building materials by surface deposition of CaCO3 by bacillus pasteurii[J]. Materials Science and Engineering: C, 2009, 29(4): 1273-1280. doi: 10.1016/j.msec.2008.10.025
    [17]
    程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495.

    CHENG Xiaohui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495(in Chinese).
    [18]
    ARPAJIRAKUL S, PUNGRASMI W, LIKITLERSUANG S. Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement[J]. Construction and Building Materials, 2021, 282: 122722. doi: 10.1016/j.conbuildmat.2021.122722
    [19]
    刘士雨, 俞缙, 刘文强, 等. 基于MICP的珊瑚砂砂浆裂缝自修复新型细菌载体[J]. 建筑材料学报, 2021, 24(4): 687-693.

    LIU Shiyu, YU Jin, LIU Wenqiang, et al. New bacterial carrier for the crack self-healing in coral sand mortar based on MICP[J]. Journal of Building Materials, 2021, 24(4): 687-693(in Chinese).
    [20]
    王剑云, 柯懿耘, 温建峰, 等. 微生物菌体对砂浆疏水性能的提升及机理分析[J]. 硅酸盐学报, 2023, 51(5): 1165-1173.

    WANG Jianyun, KE Yiyun, WEN Jianfeng, et al. Application of microorganisms to improve hydrophobic properties of mortar and its mechanisms[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1165-1173(in Chinese).
    [21]
    朱亚光, 戎丹萍, 徐培蓁, 等. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078, 4087.

    ZHU Yaguang, RONG Danping, XU Peizhen, et al. Influence of oxygen supply agent concentration and soaking position on MICP recycled aggregate properties[J]. Materials Reports, 2021, 35(4): 4074-4078, 4087(in Chinese).
    [22]
    ZHANG R, WANG J Y. Effect of regulating urease activity on the properties of bio-CaCO3 precipitated on recycled aggregates[J]. Construction and Building Materials, 2023, 403: 133119. doi: 10.1016/j.conbuildmat.2023.133119
    [23]
    LIU S H, DU K, HUANG W, et al. Improvement of erosion-resistance of bio-bricks through fiber and multiple MICP treatments[J]. Construction and Building Materials, 2021, 271: 121573. doi: 10.1016/j.conbuildmat.2020.121573
    [24]
    花素珍, 张家广, 高沛, 等. 增强再生骨料固载混菌的混凝土裂缝自修复性能[J]. 复合材料学报, 2023, 40(11): 6299-6310.

    HUA Suzhen, ZHANG Jiaguang, GAO Pei, et al. Self-healing of concrete cracks by immobilizing non-axenic bacteria with enhanced recycled aggregates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6299-6310(in Chinese).
    [25]
    WANG R X, JIN P, DING Z C, et al. Surface modification of recycled coarse aggregate based on microbial induced carbonate precipitation[J]. Journal of Cleaner Production, 2021, 328: 129537. doi: 10.1016/j.jclepro.2021.129537
    [26]
    张鹏, 郭得阳, 鲍玖文, 等. 基于微生物矿化作用的混凝土自愈合性能研究进展[J]. 硅酸盐学报, 2022, 50(2): 544-554.

    ZHANG Peng, GUO Deyang, BAO Jiuwen, et al. Self-healing performance of concrete based on microbial mineralization: A review[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 544-554(in Chinese).
    [27]
    徐培蓁, 陈发滨, 李泉荃, 等. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.

    XU Peizhen, CHEN Fabin, LI Quanquan, et al. Effect of microbial mineralization deposition on interfacial transition zone of recycled aggregate[J]. Materials Reports, 2020, 34(6): 6095-6099(in Chinese).
    [28]
    李锺奥, 陆春华, 成亮, 等. 扩散法用于微生物矿化修复混凝土竖向裂缝的试验研究[J]. 材料导报, 2023, 37(13): 125-130.

    LI Zhong'ao, LU Chunhua, CHENG Liang, et al. Experimental study on repairing vertical cracks of concrete by microbial mineralization with diffusion method[J]. Materials Reports, 2023, 37(13): 125-130(in Chinese).
    [29]
    CHENG L, KOBAYASHI T, SHAHIN M A. Microbially induced calcite precipitation for production of "bio-bricks" treated at partial saturation condition[J]. Construction and Building Materials, 2020, 231: 117095. doi: 10.1016/j.conbuildmat.2019.117095
    [30]
    YANG Y, CHU J, XIAO Y, et al. Seepage control in sand using bioslurry[J]. Construction and Building Materials, 2019, 212: 342-349. doi: 10.1016/j.conbuildmat.2019.03.313
    [31]
    ZHAO Y X, PENG L G, FENG Z Y, et al. Optimization of microbial induced carbonate precipitation treatment process to improve recycled fine aggregate[J]. Cleaner Materials, 2021, 1: 100003. doi: 10.1016/j.clema.2021.100003
    [32]
    LIU K W, OUYANG J Z, SUN D S, et al. Enhancement mechanism of different recycled fine aggregates by microbial induced carbonate precipitation[J]. Journal of Cleaner Production, 2022, 379: 134783. doi: 10.1016/j.jclepro.2022.134783
    [33]
    ZHANG R, XIE D Z, WU K, et al. Optimization of sodium alginate aided bio-deposition treatment of recycled aggregates and its application in concrete[J]. Cement and Concrete Composites, 2023, 139: 105031. doi: 10.1016/j.cemconcomp.2023.105031
    [34]
    LI Z M, LIU H B, WANG F T, et al. Experimental study to improve the mechanical properties of graphite tailings sand through microbially induced calcium carbonate precipitation[J]. Construction and Building Materials, 2023, 409: 134165. doi: 10.1016/j.conbuildmat.2023.134165
    [35]
    ZHANG J K, SU P D, LI L. Microbial induced carbonate precipitation modified steel slag: Mechanical improvement and erosion resistance to sulfate attack[J]. Journal of Cleaner Production, 2023, 405: 136982. doi: 10.1016/j.jclepro.2023.136982
    [36]
    中国国家标准化管理委员会. 水泥砂浆强度试验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People's Republic of China. Test method for the strength of cement mortar (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [37]
    中国电力企业联合会. 水工混凝土砂石骨料试验规程: DL/T 5151—2014[S]. 北京: 中国电力出版社, 2014.

    China Electricity Council. Code for testing aggregates of hydraulic concrete: DL/T 5151—2014[S]. Beijing: China Electric Power Press, 2014(in Chinese).
    [38]
    杨黔, 蒋正武, 张兵兵, 等. 浅变质岩骨料碱活性特征及抑制措施[J]. 建筑材料学报, 2019, 22(6): 941-948.

    YANG Qian, JIANG Zhengwu, ZHANG Bingbing, et al. Alkali activity and inhibition of low-grade metamorphic rock aggregates[J]. Journal of Building Materials, 2019, 22(6): 941-948(in Chinese).
    [39]
    卢佳林, 邓敏, 莫立武. LiNO3抑制碱硅酸反应的效果及作用机理[J]. 混凝土, 2012(9): 19-22, 29.

    LU Jialin, DENG Min, MO Liwu. Effects of lithium nitrate on mitigating ASR expansion and its mechanism[J]. Concrete, 2012(9): 19-22, 29(in Chinese).
    [40]
    刘刚. 含铝物质对混凝土中碱-硅酸反应抑制作用的研究[D]. 唐山: 河北联合大学, 2014.

    LIU Gang. Effect of the substances containing aluminum on suppressing alkali-silica reaction in concrete[D]. Tangshan: Hebei United University, 2014(in Chinese).
    [41]
    HAY R, OSTERTAG C P. New insights into the role of fly ash in mitigating alkali-silica reaction (ASR) in concrete[J]. Cement and Concrete Research, 2021, 144: 106440. doi: 10.1016/j.cemconres.2021.106440
    [42]
    KHAN M N N, SAHA A K, SARKER P K. Evaluation of the ASR of waste glass fine aggregate in alkali activated concrete by concrete prism tests[J]. Construction and Building Materials, 2021, 266: 121121. doi: 10.1016/j.conbuildmat.2020.121121
    [43]
    LIAUDAT J, CAROL I, LÓPEZ C M, et al. ASR expansions at the level of a single glass-cement paste interface: Experimental results and proposal of a reaction-expansion mechanism[J]. Construction and Building Materials, 2019, 218: 108-118. doi: 10.1016/j.conbuildmat.2019.05.106
    [44]
    FANIJO E O, KOLAWOLE J T, ALMAKRAB A. Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects and evaluation test methods adopted in the United States[J]. Case Studies in Construction Materials, 2021, 15: e00563. doi: 10.1016/j.cscm.2021.e00563
    [45]
    LEEMANN A, SHI Z G, LINDGÅRD J. Characterization of amorphous and crystalline ASR products formed in concrete aggregates[J]. Cement and Concrete Research, 2020, 137: 106190. doi: 10.1016/j.cemconres.2020.106190
    [46]
    YU X N, CHU J, WU S F, et al. Production of biocement using steel slag[J]. Construction and Building Materials, 2023, 383: 131365. doi: 10.1016/j.conbuildmat.2023.131365
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article Metrics

    Article views (265) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return