Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
SHAO Xinxiang, ZHANG Shouyin, ZHANG Kun, et al. Microstructure and high-temperature tensile properties of Ti2AlNb/TA15 laminated composites prepared by vacuum hot pressing[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4353-4365. doi: 10.13801/j.cnki.fhclxb.20240012.002
Citation: SHAO Xinxiang, ZHANG Shouyin, ZHANG Kun, et al. Microstructure and high-temperature tensile properties of Ti2AlNb/TA15 laminated composites prepared by vacuum hot pressing[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4353-4365. doi: 10.13801/j.cnki.fhclxb.20240012.002

Microstructure and high-temperature tensile properties of Ti2AlNb/TA15 laminated composites prepared by vacuum hot pressing

doi: 10.13801/j.cnki.fhclxb.20240012.002
Funds:  Jiangxi Province Key Disciplines Academic and Technical Leaders Training Program (20225 BCJ22002)
  • Received Date: 2023-11-01
  • Accepted Date: 2024-01-03
  • Rev Recd Date: 2023-12-10
  • Available Online: 2024-01-15
  • Publish Date: 2024-08-01
  • In order to improve the intrinsic brittleness of Ti2AlNb alloy without sacrificing its high-temperature performance, a composite material was prepared by combining it with high-temperature titanium alloy TA15 using vacuum hot pressing. The effects of different hot pressing temperatures on the microstructure and tensile properties of Ti2AlNb/TA15 laminated composite materials were investigated. The results show that the pore defects in the interface layer gradually decrease with the increase of the hot pressing temperature. A defect-free metallurgical bonding interface can be achieved at temperatures of 1050℃ and above. The thickness of the interface reaction layer increases with the rise of the hot pressing temperature. Under the diffusion conditions at 1050℃ and above, a transition layer of certain width formed between the reaction zone and the Ti2AlNb layers, which improve the properties of the interface bonding. Tensile tests indicate that the room and high-temperature tensile properties of the Ti2AlNb/TA15 laminated composite material are significantly improved compared with Ti2AlNb alloy. The laminated composite material under the hot pressing temperature condition of 1050℃ exhibits excellent comprehensive performance, with a high-temperature tensile strength and strain of 667.85 MPa and 16.2%, respectively.

     

  • loading
  • [1]
    王兴杰. “爆炸焊接+热处理”制备Ti/Al3Ti叠层复合材料及其性能研究 [D]. 太原: 中北大学, 2022.

    WANG Xingjie. Research on the preparation and properties of Ti/Al3Ti laminated composites by explosive welding and heat treatment [D]. Taiyuan: North University of China, 2022 (in Chinese).
    [2]
    赵赫威, 郭林. 仿贝壳珍珠母层状复合材料的制备及应用[J]. 科学通报, 2017, 62(6): 576-589. doi: 10.1360/N972016-00754

    ZHAO Hewei, GUO Lin. Synthesis and applications of layered structural composites inspired by nacre[J]. Chinese Science Bulletin, 2017, 62(6): 576-589(in Chinese). doi: 10.1360/N972016-00754
    [3]
    尹楚藩. 基于爆炸焊接法的Ti/TiAl3叠层复合材料制备技术研究 [D]. 太原: 中北大学, 2020.

    YIN Chufan. Research on the preparation technology of Ti/TiAl3 laminated composites based on explosion welding method [D]. Taiyuan: North University of China, 2020(in Chinese).
    [4]
    曹阳, 朱世范, 果春焕, 等. 新型金属间化合物基层状装甲防护复合材料[J]. 兵器材料科学与工程, 2014, 37(6): 122-128. doi: 10.3969/j.issn.1004-244X.2014.06.039

    CAO Yang, ZHU Shifan, GUO Chunhuan, et al. Novel metal-intermetallic laminate composite for armor material[J]. Ordnance Material Science and Engineering, 2014, 37(6): 122-128(in Chinese). doi: 10.3969/j.issn.1004-244X.2014.06.039
    [5]
    TRESA M, POLLOCK. Alloy design for aircraft engines[J]. Nature Materials, 2016, 15: 809-815. doi: 10.1038/nmat4709
    [6]
    HAGIWARA M, EMURA S, ARAOKA A, et al. Enhanced mechanical properties of orthorhombic Ti2AlNb-based intermetallic alloy[J]. Metals Materials International, 2003, 9: 265-272. doi: 10.1007/BF03027045
    [7]
    冯艾寒, 李渤渤, 沈军. Ti2AlNb基合金的研究进展[J]. 材料与冶金学报, 2011, 10(1): 30-38. doi: 10.3969/j.issn.1671-6620.2011.01.007

    FENG Aihan, LI Bobo, SHEN Jun. Recent advances on Ti2AlNb-based alloys[J]. Journal of Materials and Metallurgy, 2011, 10(1): 30-38(in Chinese). doi: 10.3969/j.issn.1671-6620.2011.01.007
    [8]
    FRONCZEK D M, WOJEWODA-BUDKA J, CHULIST R, et al. Structural properties of Ti/Al clads manufactured by explosive welding and annealing[J]. Materials & Design, 2016, 91: 80-89.
    [9]
    FINDIK F. Recent developments in explosive welding[J]. Materials & Design, 2011, 32(3): 1081-1093.
    [10]
    SUN W, FAN H Y, YOU F H, et al. Prediction of interfacial phase formation and mechanical properties of Ti6Al4V-Ti43Al9V laminate composites[J]. Materials Science and Engineering, 2020, 782: 139173.
    [11]
    SUN W, YOU F H, KONG F T, et al. Effect of residual stresses on the mechanical properties of Ti-TiAl laminate composites fabricated by hot-pack rolling[J]. Materials Characterization, 2020, 166: 110394. doi: 10.1016/j.matchar.2020.110394
    [12]
    LYU S Y, SUN Y B, LI G D, et al. Effect of layer sequence on the mechanical properties of Ti/TiAl laminates[J]. Materials & Design, 2018, 143: 160-168.
    [13]
    SUN W, YOU F H, KONG F T, et al. Enhanced tensile strength and fracture toughness of a Ti-TiAl metal-intermetallic laminate (MIL) composite[J]. Intermetallics, 2020, 118: 106684. doi: 10.1016/j.intermet.2019.106684
    [14]
    ZHU H F, SUN W, KONG F T, et al. Interfacial characteristics and mechanical properties of TiAl/Ti6Al4V laminate composite (LMC) fabricated by vacuum hot pressing[J]. Materials Science and Engineering: A, 2019, 742: 704-711. doi: 10.1016/j.msea.2018.07.086
    [15]
    孔凡涛, 陈玉勇. γ-TiA1/TC4复合板材的制备及组织性能研究[J]. 稀有金属材料与工程, 2009, 38(8): 1484-1486. doi: 10.3321/j.issn:1002-185X.2009.08.040

    KONG Fantao, CHEN Yuyong. Preparation of γ-TiAl/TC4 composite sheet and its microstructure and properties[J]. Rare Metal Materials and Engineering, 2009, 38(8): 1484-1486(in Chinese). doi: 10.3321/j.issn:1002-185X.2009.08.040
    [16]
    宋志恒. TiAl/Ti合金层状复合材料的制备及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    SONG Zhiheng. Fabrication and microstructure and mechanical properties of TiAl/Ti laminated composities[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [17]
    FAN M Y, DOMBLESKY J, JIN K, et al. Effect of original layer thicknesses on the interface bonding and mechanical properties of TiAl laminate composites[J]. Materials & Design, 2016, 99: 535-542.
    [18]
    杨蕊鸿, 林飞, 朱岩, 等. TC4/Ti2AlNb异种合金扩散连接接头组织与性能研究[J]. 热加工工艺, 2020, 49(5): 20-24.

    YANG Ruihong, LIN Fei, ZHU Yan, et al. Microstructure and mechanical properties of diffusion bonded joints of TC4/Ti2AlNb dissimilar alloys[J]. Hot Working Technology, 2020, 49(5): 20-24(in Chinese).
    [19]
    LI D H, WANG B B, LUO L S, et al. The interface structure and its impact on the mechanical behavior of TiAl/Ti2AlNb laminated composites[J]. Materials Science and Engineering, 2021, 827: 142095.
    [20]
    LI P, JI X H, XUE K M. Diffusion bonding of TA15 and Ti2AlNb alloys: Interfacial microstructure and mechanical properties[J]. Materials Engineering and Performance, 2017, 26(4): 1839-1846. doi: 10.1007/s11665-017-2555-4
    [21]
    LI P, WANG L S, WANG B, et al. Diffusion and mechanical properties of Ti2AlNb and TA15 interface: From experiments to molecular dynamics[J]. Vacuum, 2022, 195: 110637. doi: 10.1016/j.vacuum.2021.110637
    [22]
    LIU Y T, ZHANG Y Z. Microstructure and mechanical properties of TA15-Ti2AlNb bimetallic structures by laser additive manufacturing[J]. Materials Science and Engineering: A, 2020, 795: 140019. doi: 10.1016/j.msea.2020.140019
    [23]
    SUN Z C, YANG H. Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming[J]. Materials Science and Engineering: A, 2009, 523(1-2): 184-192. doi: 10.1016/j.msea.2009.05.058
    [24]
    WEI M, CHEN S, LIANG J, et al. Effect of atomization pressure on the breakup of TA15 titanium alloy powder prepared by EIGA method for laser 3D printing[J]. Vacuum, 2017, 143: 185-194. doi: 10.1016/j.vacuum.2017.06.014
    [25]
    ZHANG K, LEI Z, CHEN Y, et al. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15[J]. Optics & Laser Technology, 2015, 73: 139-145.
    [26]
    BOEHLERT C J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy[J]. Journal of Phase Equilibria, 1999, 20(2): 101-108. doi: 10.1007/s11669-999-0007-z
    [27]
    ZHANG Y, CAI Q, MA Z, et al. Solution treatment for enhanced hardness in Mo-modified Ti2AlNb-based alloys[J]. Journal of Alloys and Compounds, 2019, 805(15): 1184-1190.
    [28]
    WANG J Y, GE Z M, ZHOU B Y. Aeronautical titanium alloy [M]. Shanghai: Shanghai Scientific and Technical Publishers, 1985: 120.
    [29]
    曹京霞, 方波, 黄旭, 等. 微观组织对TA15钛合金力学性能的影响[J]. 稀有金属, 2004(2): 362-364. doi: 10.3969/j.issn.0258-7076.2004.02.018

    CAO Jingxia, FANG Bo, HUANG Xu, et al. Effects of microstructure on properties of TA15 titanium alloy[J]. Chinese Journal of Rare Metals, 2004(2): 362-364(in Chinese). doi: 10.3969/j.issn.0258-7076.2004.02.018
    [30]
    ARDELL A J. Microstructural stability at elevated temperatures [J]. Journal European Ceramic Society, 1999, 19: 2217-2231.
    [31]
    STEFANSSO N, SEMIATIN S L. Mechanisms of globularization of Ti-6Al-4V during static heat treatment[J]. Metallurgical and Materials Transaction A, 2003, 34(3): 691-698. doi: 10.1007/s11661-003-0103-3
    [32]
    HE B, WU D, PAN J L, et al. Effect of heat treatment on microstructure and mechanical properties of laser deposited TA15/Ti2AlNb gradient composite structures[J]. Vacuum, 2021, 190: 110309. doi: 10.1016/j.vacuum.2021.110309
    [33]
    ZHAO Y Y, LI J Y, QIU R F, et al. Growth characterization of intermetallic compound at the Ti/Al solid state interface[J]. Materials, 2019, 12(3): 472.
    [34]
    郑友平, 曾卫东, 王伟, 等. Ti-22Al-25Nb合金等轴组织演变和拉伸性能[J]. 稀有金属材料与工程, 2017, 46(S1): 200-203.

    ZHENG Youping, ZENG Weidong, WANG Wei, et al. Equiaxed microstructure evolution and tensile properties of Ti-22Al-25Nb alloy[J]. Rare Metal Materials and Engineering, 2017, 46(S1): 200-203(in Chinese).
    [35]
    TANG B, XIAN S Q, KOU H C, et al. Recrystallization behavior at diffusion bonding interface of high Nb containing TiAl alloy[J]. Advanced Engineering Material, 2016, 18(4): 657-664. doi: 10.1002/adem.201500457
    [36]
    ZHANG H, YAN N, LIANG H, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review[J]. Journal of Materials Science & Technology, 2021, 80(21): 203-216.
    [37]
    ZHOU Y H, WANG D W, SONG L J, et al. Effect of heat treatments on themicrostructure and mechanical properties of Ti2AlNb intermetallic fabricated by selective laser melting[J]. Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing, 2021, 817: 141352.
    [38]
    LI N, ZHAO Z B, SUN H, et al. Effects of heat treatment on microstructure evolution and mechanical properties of Ti-22Al-24Nb-0.5Mo alloy[J]. Materials Science and Engineering: A, 2022, 857: 144052. doi: 10.1016/j.msea.2022.144052
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (300) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return