Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
WANG Xingjun, JIA Jiangang, PAN Zikang, et al. Preparation and properties of high specific strength carbon/carbon composites based on carbon fiber/carbon foam preforms[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4180-4188. doi: 10.13801/j.cnki.fhclxb.20240010.001
Citation: WANG Xingjun, JIA Jiangang, PAN Zikang, et al. Preparation and properties of high specific strength carbon/carbon composites based on carbon fiber/carbon foam preforms[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4180-4188. doi: 10.13801/j.cnki.fhclxb.20240010.001

Preparation and properties of high specific strength carbon/carbon composites based on carbon fiber/carbon foam preforms

doi: 10.13801/j.cnki.fhclxb.20240010.001
Funds:  National Natural Science Foundation of China (52162005); Youth Science and Technology Fund of Gansu Province, China (23JRRA777)
  • Received Date: 2023-10-20
  • Accepted Date: 2024-01-03
  • Rev Recd Date: 2023-12-14
  • Available Online: 2024-01-10
  • Publish Date: 2024-08-01
  • Carbon/carbon composites has been widely used in aerospace, weaponry and other fields with their excellent properties. However, the development of carbon/carbon composites has been limited by the high cost of carbon fiber preforms. Carbon foam has a three-dimensional network structure, and its ligaments show similar properties to carbon fibers, which can be used as the reinforcing phase to prepare carbon/carbon composites. In this paper, carbon foams with different carbon fiber volume contents (0vol%, 1vol%, 3vol%, 5vol%, 7vol%) were prepared as carbon/carbon composites preforms by using phenolic resin as the carbon source and NaCl as the pore-forming agent, and the carbon/carbon composites were prepared by using the rapid densification technique of thermal gradient chemical vapour infiltration (TG-CVI), which investigated the effects of carbon fiber content on the carbon fiber/carbon foam preform and its density, microstructure and mechanical properties after densification. The effects of carbon fiber content on the density, microstructure and mechanical properties of the carbon fiber/carbon foam preform and its densification were investigated. The results showed that with the increase of carbon fiber content, the number of microcracks in the carbon fiber/carbon foam precast body increased significantly, the density gradually decreased from 0.51 g/cm3 to 0.31 g/cm3, and the compressive strength decreased from 51.33 MPa to 1.35 MPa, flexural strength decreased from 42.53 MPa to 6.32 MPa. The compressive and flexural strengths of the carbon/carbon composites were significantly increased after densification, up to 183.67 MPa and 123.46 MPa, respectively, while the density was 1.09 g/cm3, resulting in high specific strength. The thermal conductivity of the composites increased from 0.298 W/(m·K) (before densification) to 2.484 W/(m·K), an increase of 734%, which was attributed to the formation of a three-dimensional thermal conductivity network between the carbon fibers and pyrolytic carbon after densification.

     

  • loading
  • [1]
    LI B, HUANG D, LI T, et al. The positive role of mesophase-pitch-based carbon fibers in enhancing thermal response behavior in carbon/carbon composites[J]. Materials Characterization, 2023, 196: 112630. doi: 10.1016/j.matchar.2022.112630
    [2]
    王德文, 渠聚鑫, 孟东容. 碳/碳复合材料在再入弹头上的应用研究[J]. 真空科学与技术学报, 2018, 38(1): 65-70.

    WANG Dewen, QU Juxin, MENG Dongrong. Application study of carbon/carbon composites on reentry warheads[J]. Journal of Vacuum Science and Technology, 2018, 38(1): 65-70(in Chinese).
    [3]
    隋金玲, 李木森, 吕宇鹏. 人体承重骨替换用碳/碳复合材料的研究现状[J]. 生物医学工程学杂志, 2004(4): 686-689.

    SUI Jinling, LI Musen, LYU Yupeng. Current status of carbon/carbon composites for human load-bearing bone replacement[J]. Journal of Biomedical Engineering, 2004(4): 686-689(in Chinese).
    [4]
    XU M, GUO L, ZHANG P, et al. Effect of pyrolytic carbon texture on ablation behavior of carbon/carbon composites coated with SiC by pack cementation[J]. Ceramics International, 2022, 48(7): 10261-10270. doi: 10.1016/j.ceramint.2021.12.244
    [5]
    CAO M, FENG Y, TIAN R, et al. Free-standing porous carbon foam as the ultralight and flexible supercapacitor electrode[J]. Carbon, 2020, 161: 224-230. doi: 10.1016/j.carbon.2020.01.093
    [6]
    LIU Y, WANG Y, SHI C, et al. Co-ZIF derived porous NiCo-LDH nanosheets/N doped carbon foam for high-performance supercapacitor[J]. Carbon, 2020, 165: 129-138. doi: 10.1016/j.carbon.2020.04.084
    [7]
    ZHANG P, CAO M, FENG Y, et al. Uniformly growing Co9S8 nanoparticles on flexible carbon foam as a free-standing anode for lithium-ion storage devices[J]. Carbon, 2021, 182: 404-412. doi: 10.1016/j.carbon.2021.06.032
    [8]
    OLA O, CHEN Y, ZHU Y. Three-dimensional carbon foam nanocomposites for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 191: 297-305. doi: 10.1016/j.solmat.2018.11.037
    [9]
    XU Y, ZHANG Z, GENG X, et al. Smart carbon foams with switchable wettability for fast oil recovery[J]. Carbon, 2019, 149: 242-247. doi: 10.1016/j.carbon.2019.04.039
    [10]
    XIONG W, LIU M, GAN L, et al. Preparation of nitrogen-doped macro-/mesoporous carbon foams as electrode material for supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411: 34-39. doi: 10.1016/j.colsurfa.2012.06.042
    [11]
    LI X, LI X, DONG Y, et al. Porous cobalt oxides/carbon foam hybrid materials for high supercapacitive performance[J]. Journal of Colloid and Interface Science, 2019, 542: 102-111. doi: 10.1016/j.jcis.2019.01.128
    [12]
    AGRAWAL P R, KUMAR R, UPPAL H, et al. Novel 3D lightweight carbon foam as an effective adsorbent for arsenic(V) removal from contaminated water[J]. RSC Advances, 2016, 6(36): 29899-29908. doi: 10.1039/C6RA02208A
    [13]
    CAO Z, ZHANG J, DING Y, et al. In situ synthesis of flexible elastic N-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2016, 4(22): 8636-8644. doi: 10.1039/C6TA01855F
    [14]
    KUMAR R, DHAKATE S R, SAINI P, et al. Improved electromagnetic interference shielding effectiveness of light weight carbon foam by ferrocene accumulation[J]. RSC Advances, 2013, 3(13): 4145. doi: 10.1039/c3ra00121k
    [15]
    田辞. 碳泡沫的发泡法和模板法制备及其表征[D]. 上海: 同济大学, 2008.

    TIAN Ci. Preparation and characterization of carbon foams by foaming and template methods[D]. Shanghai: Tongji University, 2008(in Chinese).
    [16]
    ANDERSON D P, KEARNS K M, KLETT J W, et al. Microcellular graphitic carbon foams for next generation structures and thermal management[C]//2000 IEEE Aerospace Conference. Big Sky: IEEE, 2000: 193-200.
    [17]
    COVACIU M, RAMOS-MOORE E, ROJAS S, et al. A novel one-pot method to synthesize hierarchical mesoporous carbon foams with ZnO coating[J]. Ceramics International, 2019, 45(17): 21475-21482. doi: 10.1016/j.ceramint.2019.07.138
    [18]
    WU Y, BAO W, XIE Y, et al. Preparation and electrochemical performance of chemical-activated carbon foam[J]. Micro & Nano Letters, 2021, 16(2): 164-170.
    [19]
    DING J, ZHONG L, HUANG Q, et al. Chitosan hydrogel derived carbon foam with typical transition-metal catalysts for efficient water splitting[J]. Carbon, 2021, 177: 160-170. doi: 10.1016/j.carbon.2021.01.160
    [20]
    MARX J, ROTH S, BROUSCHKIN A, et al. Tailored crystalline width and wall thickness of an annealed 3D carbon foam composites and their mechanical properties[J]. Carbon, 2019, 142: 60-67. doi: 10.1016/j.carbon.2018.10.004
    [21]
    PATLE V K, KUMAR R, SHARMA A, et al. Three dimension phenolic resin derived carbon-CNTs hybrid foam for fire retardant and effective electromagnetic interference shielding[J]. Composites Part C: Open Access, 2020, 2: 100020. doi: 10.1016/j.jcomc.2020.100020
    [22]
    WANG C, PENG L, SHI Z H, et al. Preparation, thermal stability and deflection of a density gradient thermally-conductive carbon foam material derived from phenolic resin[J]. Results in Physics, 2019, 14: 102448. doi: 10.1016/j.rinp.2019.102448
    [23]
    WANG B, LUO X, KANG Y, et al. Preparation and properties of glass fiber reinforced carbon foam composites[J]. Applied Composite Materials, 2022, 29(2): 845-853. doi: 10.1007/s10443-021-09993-w
    [24]
    FARHAN S, WANG R M. Thermal, mechanical and self-destruction properties of aluminum reinforced carbon foam[J]. Journal of Porous Materials, 2015, 22(4): 897-906. doi: 10.1007/s10934-015-9963-3
    [25]
    MEI H, ZHAO G, LIU G, et al. Effect of pore size distribution on the mechanical performance of carbon foams reinforced by in situ grown Si3N4 whiskers[J]. Journal of the European Ceramic Society, 2015, 35(16): 4431-4435. doi: 10.1016/j.jeurceramsoc.2015.08.001
    [26]
    中国国家标准化管理委员会. 碳/碳复合材料压缩性能试验方法: GB/T 34559—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People's Republic of China. Test method for compressive properties of carbon/carbon composites: GB/T 34559—2017[S]. Beijing: China Standards Press, 2017(in Chinese).
    [27]
    World Trade Organization Technical Barriers to Trade (TBT) Committee. Standard test method for flexural strength of advanced ceramics at ambient temperature: ASTM C1161—18[S]. Philadelphia: American Society for Testing and Materials, 2023.
    [28]
    WANG Y, HE Z, ZHAN L, et al. Coal tar pitch based carbon foam for thermal insulating material[J]. Materials Letters, 2016, 169: 95-98. doi: 10.1016/j.matlet.2016.01.081
    [29]
    LI S, CHEN F, ZHANG B, et al. Structure and improved thermal stability of phenolic resin containing silicon and boron elements[J]. Polymer Degradation and Stability, 2016, 133: 321-329. doi: 10.1016/j.polymdegradstab.2016.07.020
    [30]
    JORIO A, SAITO R, DRESSELHAUS G, et al. Raman spectroscopy in graphene related systems[M]. 1st Edition. Wiley: Wiley-VCH, 2011: 301-308.
    [31]
    WANG X, LUO R, NI Y, et al. Properties of chopped carbon fiber reinforced carbon foam composites[J]. Materials Letters, 2009, 63(1): 25-27. doi: 10.1016/j.matlet.2008.08.036
    [32]
    AGARI Y, UNO T. Estimation on thermal conductivities of filled polymers[J]. Journal of Applied Polymer Science, 2010, 32(7): 5705-5712.
    [33]
    史青, 彭勃, 朱爱萍. 膨胀石墨-碳纤维/尼龙三元导热复合材料制备[J]. 复合材料学报, 2019, 36(3): 555-562.

    SHI Qing, PENG Bo, ZHU Aiping. Preparation of expanded graphite-carbon fiber/nylon ternary thermally conductive composites[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 555-562(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (404) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return