Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
ZHANG Jinsong, TANG Yulun, ZHAN Jiajia, et al. Mechanical properties of micro silicon powder-rubber/cement mortar under dynamic and static loading[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4287-4298. doi: 10.13801/j.cnki.fhclxb.20240008.004
Citation: ZHANG Jinsong, TANG Yulun, ZHAN Jiajia, et al. Mechanical properties of micro silicon powder-rubber/cement mortar under dynamic and static loading[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4287-4298. doi: 10.13801/j.cnki.fhclxb.20240008.004

Mechanical properties of micro silicon powder-rubber/cement mortar under dynamic and static loading

doi: 10.13801/j.cnki.fhclxb.20240008.004
Funds:  Natural Science Research Project of Universities in Anhui (2023AH051219); Anhui Key Laboratory of Mining Construction Engineering (GXZDSYS2022102)
  • Received Date: 2023-10-31
  • Accepted Date: 2023-12-26
  • Rev Recd Date: 2023-12-06
  • Available Online: 2024-01-09
  • Publish Date: 2024-08-01
  • In order to study the mechanical properties of micro silicon powder (MP)-rubber/cement mortar, 16 sets of specimens were designed and analyzed by uniaxial compression test and impact test (separate Hopkinson pressure bar (SHPB)) for peak stress, peak strain, modulus of elasticity, impact strength, damage morphology and stress-strain curves of the specimens with different micro silicon powder dosage, rubber particle sizes and curing ages. The uniaxial compressive test shows that the addition of rubber particles decreases the compressive strength and modulus of elasticity of mortar specimens and increases the peak strain at the same age of maintenance, and the strength and modulus of elasticity of the specimens recover after the addition of micro silica powder. The impact resistance test shows that: Rubber will reduce the impact strength of mortar, but can improve the damage morphology of mortar, and micro silica powder not only enhances this improvement, but also improves the impact strength of rubber/cement mortar, in addition, after the addition of micro silica powder, the peak load of the stress-strain curve of the specimen will be shifted to the left due to the shortening of the elastic deformation and elasto-plastic deformation stages, but the damage stage is obviously prolonged.

     

  • loading
  • [1]
    中国轮胎循环利用协会. 《中国轮胎循环利用行业“十四五” 发 展 规 划 》 征 求 行 业意 见[J]. 中 国 轮 胎 资 源 综 合 利 用, 2020(11): 12-19.

    China Tire Recycling Association. Soliciting industry opinions for "the 14th five-year development plan of China's Tire Recycling Industry"[J]. China Tire Resources Recycling, 2020(11): 12-19(in Chinese).
    [2]
    姜雪丹. 富氧条件下废弃轮胎颗粒的着火、燃烧和排放特性研究[D]. 合肥: 中国科学技术大学, 2020.

    JIANG Xuedan. Study on ignition, combustion and emission characteristics of waste tire particles under oxygen-enriched conditions[D]. Hefei: University of Science and Technology of China, 2020(in Chinese).
    [3]
    THOMAS B S, GUPTA R C. Long term behaviour of cement concrete containing discarded tire rubber[J]. Journal of Cleaner Production, 2015, 102(9): 78-87.
    [4]
    杨荣周, 徐颖, 陈佩圆, 等. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报, 2021, 35(10): 10062-10072. doi: 10.11896/cldb.20030105

    YANG Rongzhou, XU Ying, CHEN Peiyuan, et al. Experimental study on dynamic mechanics, energy characteristics, and failuremechanism of rubber cement mortar under SHPB splitting test[J]. Material Reports, 2021, 35(10): 10062-10072(in Chinese). doi: 10.11896/cldb.20030105
    [5]
    朱浩君, 薛刚, 刘利强, 等. 橡胶混凝土的疲劳行为与损伤机理[J/OL]. 武汉大学学报(工学版): 1-9[2024-06-20].

    ZHU Haojun, XUE Gang, LIU Liqiang, et al. Fatigue behavior and damage mechanism of rubber concrete[J/OL]. Engineering Journal of Wuhan University: 1-9[2024-06-20] (in Chinese).
    [6]
    杨若冲, 谈至明, 黄晓明, 等. 硅灰改性橡胶混凝土路用性能研究[J]. 公路交通科技, 2010, 27(10): 6-10. doi: 10.3969/j.issn.1002-0268.2010.10.002

    YANG Ruochong, TAN Zhiming, HUANG Xiaoming, et al. Study on performance of silice fume modified rubberized concrete[J]. Journal of Highway and Transportation Research and Development, 2010, 27(10): 6-10(in Chinese). doi: 10.3969/j.issn.1002-0268.2010.10.002
    [7]
    TIAN L, QIU L C, LI J J, et al. Experimental study of waste tire rubber, wood-plastic particles and shale cream site on the performance of self-compacting concrete[J]. Journal of Renewable Materials, 2020, 8(2): 154-170. doi: 10.32604/jrm.2020.08701
    [8]
    ASLANI F, MA G W, YIM W D L, et al. Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules[J]. Journal of Cleaner Production, 2018, 182: 553-566. doi: 10.1016/j.jclepro.2018.02.074
    [9]
    HILAL N N. Hardened properties of self-compacting concrete with different crumb rubber size and content[J]. International Journal of Sustainable Built Environment, 2017, 6(1): 191-206. doi: 10.1016/j.ijsbe.2017.03.001
    [10]
    梁炯丰, 谢挺挺, 吴华英, 等. 橡胶粉改性再生混凝土基本力学性能研究[J]. 混凝土, 2015(11): 21-26. doi: 10.3969/j.issn.1002-3550.2015.11.006

    LIANG Jiongfeng, XIE Tingting, WU Yinghua, et al. Experimental research on the basic mechanical properties of rubber recycled coarse aggregate concrete[J]. Concrete, 2015(11): 21-26(in Chinese). doi: 10.3969/j.issn.1002-3550.2015.11.006
    [11]
    张卫东, 何卫忠. 废橡胶对再生混凝土抗压性能影响的试验研究[J]. 混凝土, 2013(7): 62-64. doi: 10.3969/j.issn.1002-3550.2013.07.017

    ZHANG Weidong, HE Weizhong. Influence of waste rubber on the compressive performance of recycled concrete[J]. Concrete, 2013(7): 62-64(in Chinese). doi: 10.3969/j.issn.1002-3550.2013.07.017
    [12]
    ISMAIL M K, HASSAN A A A. Impact resistance and mechanical properties of self-consolidating rubberized concrete reinforced with steel fibers[J]. Journal of Materials in Civil Engineering, 2017, 29(1): 1-14.
    [13]
    ABDELALEEM B H, ISMAIL M K, HASSAN A A A. The combined effect of crumb rubber and synthetic fibers on impact resistance of self-consolidating concrete[J]. Construction and Building Materials, 2018, 162: 816-829. doi: 10.1016/j.conbuildmat.2017.12.077
    [14]
    龙广成, 李宁, 薛逸骅, 等. 冲击荷载作用下掺橡胶颗粒自密实混凝土的力学性能[J]. 硅酸盐学报, 2016, 44(8): 1081-1090.

    LONG Guangcheng, LI Ning, XUE Yihua, et al. Mechanical properties of self-compacting concrete incorporating rubber particles under impact load[J]. Journal of the Chinese Ceramic Society, 2016, 44(8): 1081-1090(in Chinese).
    [15]
    LI N, LONG G C, MA C, et al. Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: A comprehensive study[J]. Journal of Cleaner Production, 2019, 236: 117707. doi: 10.1016/j.jclepro.2019.117707
    [16]
    赵秋红, 董硕, 朱涵. 钢纤维-橡胶/混凝土抗剪性能试验[J]. 复合材料学报, 2020, 37(12): 3201-3213.

    ZHAO Qiuhong, DONG Shuo, ZHU Han. Experimental study on shear behavior of steel fiber-rubber/concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3201-3213(in Chinese).
    [17]
    赵秋红, 董硕, 朱涵. 钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型[J]. 复合材料学报, 2021, 38(7): 2359-2369.

    ZHAO Qiuhong, DONG Shuo, ZHU Han. Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/concrete subjected to uniaxial compression[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2359-2369(in Chinese).
    [18]
    李伟, 黄振, 王晓初, 等. 胶乳改性橡胶混凝土基本力学性能研究[J]. 建筑科学, 2015, 31(3): 68-72.

    LI Wei, HUANG Zhen, WANG Xiaochu, et al. Basic mechanical performance of latex modified rbber concrete[J]. Building Science, 2015, 31(3): 68-72(in Chinese).
    [19]
    林强, 刘赞群, 禹雷, 等. 乳化沥青橡胶混凝土的力学性能[J]. 复合材料学报, 2023, 40(3): 1560-1568.

    LIN Qiang, LIU Zanqun, YU Lei, et al. Mechanical properties of emulsified asphalt rubber concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1560-1568(in Chinese).
    [20]
    冯森林, 屠艳平, 章翔. 纳米SiO2浸泡改性再生橡胶混凝土力学性能研究[J]. 水泥工程, 2022(6): 75-79.

    FENG Senlin, TU Yanping, ZHANG Xiang. Study on mechanical properties of recycled rubber concrete modified by nano-SiO2 immersion[J]. Cement Engineering, 2022(6): 75-79(in Chinese).
    [21]
    王娟, 王文超, 许耀群, 等. 纳米SiO2对橡胶混凝土断裂行为的影响[J]. 建筑材料学报, 2023, 26(7): 731-738. doi: 10.3969/j.issn.1007-9629.2023.07.005

    WANG Juan, WANG Wenchao, XU Yaoqun, et al. Effect of nano-SiO2 on fracture behavior of rubber concrete[J]. Journal of Building Materials, 2023, 26(7): 731-738(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.07.005
    [22]
    GAO D, ZHANG T, PANG Y, et al. Flexural behavior analysis and strength prediction of steel fiber and nanosilica reinforced rubber concrete[J]. Advances in Structural Engineering, 2022, 25(4): 864-876. doi: 10.1177/13694332211050988
    [23]
    MOHAMMED B S, WANG A B, WANG S S, et al. Properties of nano silica modified rubber concrete[J]. Journal of Cleaner Production, 2016, 119: 66-75. doi: 10.1016/j.jclepro.2016.02.007
    [24]
    ONUAGULUCHI O. Effects of surface pre-coating and silica fume on crumb rubber-cement matrix interface and cement mortar properties[J]. Journal of Cleaner Production, 2015, 104: 339-345. doi: 10.1016/j.jclepro.2015.04.116
    [25]
    马海彬, 胡凡, 马晴晴, 等. 橡胶粒径与掺量对砂浆力学性能影响的试验研究[J]. 科学技术与工程, 2019, 19(4): 232-236.

    MA Haibing, HU Fan, MA Qingqing, et al. Experimental investigation on effect of particle size and dosage of rubber on mechanical properties of mortar[J]. Science Technology and Engineering, 2019, 19(4): 232-236(in Chinese)
    [26]
    任翔, 胡功宏, 吴帆, 等. 纳米硅粉对大掺量橡胶砂浆力学及收缩性能影响试验研究[J]. 科学技术与工程, 2019, 19(22): 299-304. doi: 10.3969/j.issn.1671-1815.2019.22.044

    REN Xiang, HU Gonghong, WU Fan, et al. Effect of nano silica powder on mechanical and shrinkage properties of high volume rubber mortar[J]. Science Technology and Engineering, 2019, 19(22): 299-304 (in Chinese). doi: 10.3969/j.issn.1671-1815.2019.22.044
    [27]
    ASTM. Standard test method for compressive strength of hydraulic cement mortars: ASTM C109[S]. West Conshohocken: ASTM International, 2016.
    [28]
    叶仁传, 田阿利, 沈超明. 霍普金森压杆(SHPB)实验波形振荡问题的影响与解决方法[J]. 科学技术与工程, 2014, 14(1): 1-4, 9. doi: 10.3969/j.issn.1671-1815.2014.01.001

    YE Renzhuan, TIAN A'li, SHEN Chaoming. Effects and solutions of SHPB experimental waveform oscillation[J]. Science Technology and Engineering, 2014, 14(1): 1-4, 9(in Chinese). doi: 10.3969/j.issn.1671-1815.2014.01.001
    [29]
    阮波, 李雪松, 邓威, 等. 水泥砂浆桩无侧限抗压强度试验研究[J]. 铁道科学与工程学报, 2017, 14(9): 1859-1862. doi: 10.3969/j.issn.1672-7029.2017.09.008

    RUAN Bo, LI Xuesong, DENG Wei, et al. Experimental study of unconfined compressive strength of cement mortar pile[J]. Journal of Railway Science and Engineering, 2017, 14(9): 1859-1862(in Chinese). doi: 10.3969/j.issn.1672-7029.2017.09.008
    [30]
    MEI J P, TAN H B, LI H N, et al. Effect of sodium sulfate and nano-SiO2: On hydration and microstructure of cementitious materials containing high volume fly ash under steam curing[J]. Construction and Building Materials, 2018, 163: 812-825.
    [31]
    BEHFARMIA K, ROSTAMI M. Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete[J]. Construction and Building Materials, 2017, 131: 205-213.
    [32]
    郭帆, 曾磊, 莫金旭, 等. 外掺橡胶粉的苯丙乳液改性混凝土力学性能及微观结构[J]. 建筑材料学报, 2019, 22(5): 714-720, 729. doi: 10.3969/j.issn.1007-9629.2019.05.007

    GUO Fan, ZENG Lei, MO Jinxu, et al. Mechanical properties and microstructure of styrene-acrylic emulsion modified concrete with rubber powder[J]. Journal of Building Materials, 2019, 22(5): 714-720,729(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.05.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (255) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return