Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
WANG Wenbo, SONG Yanping, LI Nian, et al. In-situ modification of laser-induced graphene with silver nanoparticles and its electronic conductivity modulation[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4124-4133. doi: 10.13801/j.cnki.fhclxb.20231220.003
Citation: WANG Wenbo, SONG Yanping, LI Nian, et al. In-situ modification of laser-induced graphene with silver nanoparticles and its electronic conductivity modulation[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4124-4133. doi: 10.13801/j.cnki.fhclxb.20231220.003

In-situ modification of laser-induced graphene with silver nanoparticles and its electronic conductivity modulation

doi: 10.13801/j.cnki.fhclxb.20231220.003
Funds:  Major Scientic and Technological Special Project of Anhui Province (202103a05020013)
  • Received Date: 2023-10-11
  • Accepted Date: 2023-12-12
  • Rev Recd Date: 2023-12-05
  • Available Online: 2023-12-21
  • Publish Date: 2024-08-01
  • With the rapid development of high-frequency communication technology, electromagnetic interference (EMI) issue has been increasing. Hence, EMI shielding materials for the 5G frequency band are in high demand. Here, a two-step laser-induced strategy was developed to rapidly prepare silver nanoparticles/porous graphene flexible composite in a solid-phase synthesis process. AgNO3 solution can be efficiently adsorbed by hydrophilic laser-induced graphene (LIG) obtained by the first laser irradiation with tuned parameters, which provides favorable conditions for the abundant and homogeneous loading of Ag nanoparticles on LIG after in-situ the second laser irradiation. Furthermore, the microstructures, structural properties and electronic conductivity of the prepared Ag/LIG composites with different AgNO3 additive concentrations are detailedly analyzed. As a result, with a 0.5 mol/L AgNO3 additive concentration, Ag nanoparticles in the composite film maintain small size while exhibiting the best dispersion, exhibiting a high conductivity of 2788 S/m. In the 18-27 GHz frequency band, the EMI shielding effectiveness increases from 18-26 dB of LIG to 36-40 dB of composite materials. The EMI shielding effectiveness of Ag/LIG-0.5 at the 26 GHz reaches 38 dB with an over 90% shielding effectiveness retention rate after 200 bending cycles.

     

  • loading
  • [1]
    WANG B, JI Y, MU C, et al. Well-controlled core-shell structures based on Fe3O4 nanospheres coated by polyaniline for highly efficient microwave absorption[J]. Applied Surface Science, 2022, 591: 153176. doi: 10.1016/j.apsusc.2022.153176
    [2]
    YU J, GU W, ZHAO H, et al. Lightweight, flexible and freestanding PVA/PEDOT∶PSS/Ag NWs film for high-performance electromagnetic interference shielding[J]. Science China Materials, 2021, 64(7): 1723-1732. doi: 10.1007/s40843-020-1557-3
    [3]
    GUO D, HUO Y, MU C, et al. Flexible aramid nanofiber/Ag nanowires/graphene nanosheets composite films with sandwich structure for high-performance electromagnetic interference shielding and Joule heating[J]. Journal of Alloys and Compounds, 2022, 923: 166401. doi: 10.1016/j.jallcom.2022.166401
    [4]
    瞿明城, 张礼颖, 周剑锋, 等. 碳纳米管改性CF/PEEK复合材料的力学与电磁屏蔽性能[J]. 复合材料学报, 2022, 39(7): 3251-3261.

    QU Mingcheng, ZHANG Liying, ZHOU Jianfeng, et al. Effect of carbon nanotube reinforcement on the mechanical and EMI shielding properties of CF/PEEK composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3251-3261(in Chinese).
    [5]
    张明伟, 曲冠达, 庞梦瑶, 等. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.

    ZHANG Mingwei, QU Guanda, PANG Mengyao, et al. Research progress of electromagnetic shielding mechanism and coated/structural absorbing composite materials[J]. Materials Reports, 2021, 35(Z1): 62-70(in Chinese).
    [6]
    AMARO A, SUAREZ A, TAMBURRANO A, et al. EMI shielding effectiveness study for innovative carbon nanotube materials in the 5G frequency region[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(1): 177-185. doi: 10.1109/TEMC.2022.3209708
    [7]
    HAN G, MA Z, ZHOU B, et al. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2021, 583: 571-578. doi: 10.1016/j.jcis.2020.09.072
    [8]
    JAN R, HABIB A, AKRAM M A, et al. Flexible, thin films of graphene-polymer composites for EMI shielding[J]. Materials Research Express, 2017, 4(3): 035605. doi: 10.1088/2053-1591/aa6351
    [9]
    JUNG M, LEE Y S, HONG S G, et al. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE)[J]. Cement and Concrete Research, 2020, 131: 106017. doi: 10.1016/j.cemconres.2020.106017
    [10]
    ESWARAIAH V, SANKARANARAYANAN V, RAMAPRABHU S. Functionalized graphene-PVDF foam composites for EMI shielding[J]. Macromolecular Materials and Engineering, 2011, 296(10): 894-898. doi: 10.1002/mame.201100035
    [11]
    RAJAVEL K, HU Y, ZHU P, et al. MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 399: 125791. doi: 10.1016/j.cej.2020.125791
    [12]
    丁雪, 王建才, 叶志国, 等. 高性能石墨烯电磁屏蔽材料的研究进展[J]. 功能材料, 2023, 54(10): 10069-10076, 10088.

    DING Xue, WANG Jiancai, YE Zhiguo, et al. Research progress of high-performance graphene electromagnetic shielding materials[J]. Journal of Functional Material, 2023, 54(10): 10069-10076, 10088(in Chinese).
    [13]
    YIN C, TAO C A, CAI F, et al. Effects of activation temperature on the deoxygenation, specific surface area and supercapacitor performance of graphene[J]. Carbon, 2016, 109: 558-565. doi: 10.1016/j.carbon.2016.08.053
    [14]
    SHEN B, ZHAI W, ZHENG W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials, 2014, 24(28): 4542-4548. doi: 10.1002/adfm.201400079
    [15]
    SRIVASTAVA S K, MANNA K. Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review[J]. Journal of Materials Chemistry A, 2022, 10(14): 7431-7496. doi: 10.1039/D1TA09522F
    [16]
    WANG M, TANG X H, CAI J H, et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review[J]. Carbon, 2021, 177: 377-402. doi: 10.1016/j.carbon.2021.02.047
    [17]
    YE R, JAMES D K, TOUR J M. Laser-induced graphene: From discovery to translation[J]. Advanced Materials, 2019, 31(1): 1803621. doi: 10.1002/adma.201803621
    [18]
    SONG Y, LI N, HAN S, et al. Macro-sized all-graphene 3D structures via layer-by-layer covalent growth for micro-to-macro inheritable electrical performances[J]. Advanced Functional Materials, 2023, 33: 2305191.
    [19]
    XU Y, FEI Q, PAGE M, et al. Laser-induced graphene for bioelectronics and soft actuators[J]. Nano Research, 2021, 14: 3033-3050. doi: 10.1007/s12274-021-3441-9
    [20]
    SHEN Y, LIN Z, WEI J, et al. Facile synthesis of ultra-lightweight silver/reduced graphene oxide (rGO) coated carbonized-melamine foams with high electromagnetic interference shielding effectiveness and high absorption coefficient[J]. Carbon, 2022, 186: 9-18. doi: 10.1016/j.carbon.2021.09.068
    [21]
    CHEN L, LI N, YU X, et al. A general way to manipulate electrical conductivity of graphene[J]. Chemical Engineering Journal, 2023, 462: 142139. doi: 10.1016/j.cej.2023.142139
    [22]
    PENG M, QIN F. Clarification of basic concepts for electromagnetic interference shielding effectiveness[J]. Journal of Applied Physics, 2021, 130: 225108. doi: 10.1063/5.0075019
    [23]
    DONG Y, RISMILLER S C, LIN J. Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions[J]. Carbon, 2016, 104: 47-55. doi: 10.1016/j.carbon.2016.03.050
    [24]
    LIN J, PENG Z, LIU Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5(1): 5714. doi: 10.1038/ncomms6714
    [25]
    DUY L X, PENG Z, LI Y, et al. Laser-induced graphene fibers[J]. Carbon, 2018, 126: 472-479. doi: 10.1016/j.carbon.2017.10.036
    [26]
    NASSER J, LIN J, ZHANG L, et al. Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces[J]. Carbon, 2020, 162: 570-578. doi: 10.1016/j.carbon.2020.03.002
    [27]
    WANG Y, WANG G, HE M, et al. Multifunctional laser-induced graphene papers with combined defocusing and grafting processes for patternable and continuously tunable wettability from superlyophilicity to superlyophobicity[J]. Small, 2021, 17(42): 2103322. doi: 10.1002/smll.202103322
    [28]
    SONG W L, CAO M S, QIAO B B, et al. Nano-scale and micron-scale manganese dioxide vs corresponding paraffin composites for electromagnetic interference shielding and microwave absorption[J]. Materials Research Bulletin, 2014, 51: 277-286. doi: 10.1016/j.materresbull.2013.12.042
    [29]
    ZHAO G, WANG F, ZHANG Y, et al. High-performance hydrogen peroxide micro-sensors based on laser-induced fabrication of graphene@Ag electrodes[J]. Applied Surface Science, 2021, 565(1): 150565.
    [30]
    崔梦雅, 黄婷, 肖荣诗. 基于纳米颗粒热效应的飞秒激光高效直写金属铜微结构[J]. 中国激光, 2022, 8(49): 0802015.

    CUI Mengya, HUANG Ting, XIAO Rongshi. Femtosecond laser direct writing of copper microstructures with high efficiency via thermal effect of nanoparticles[J]. Chinese Journal of Lasers, 2022, 8(49): 0802015(in Chinese).
    [31]
    SHEN H, LIU J, PAN P, et al. One-step synthesis of nanosilver embedding laser-induced graphene for H2O2 sensor[J]. Synthetic Metals, 2023, 293: 117235. doi: 10.1016/j.synthmet.2022.117235
    [32]
    DONG Z, PENG Y, TAN Z, et al. Simultaneously enhanced electrical conductivity and strength in Cu/graphene/Cu sandwiched nanofilm[J]. Scripta Materialia, 2020, 187: 296-300. doi: 10.1016/j.scriptamat.2020.06.051
    [33]
    马来鹏, 任文才, 成会明. 表面电荷转移掺杂石墨烯的研究进展[J]. 物理化学学报, 2022, 38(1): 2012080.

    MA Laipeng, REN Wencai, CHENG Huiming. Progress in surface charge transfer doping of graphene[J]. Acta Physco-Chimica Sinica, 2022, 38(1): 2012080(in Chinese).
    [34]
    RYU S H, PARK B, HAN Y K, et al. Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band[J]. Journal of Materials Chemistry A, 2022, 10(8): 4446-4455. doi: 10.1039/D1TA10065C
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (295) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return