Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
LI Jianfeng, ZHAO Lu, BAI Yunfeng, et al. Research progress of MXenes for second near-infrared window photothermal diagnosis and therpay of tumors[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4026-4038. doi: 10.13801/j.cnki.fhclxb.20231220.002
Citation: LI Jianfeng, ZHAO Lu, BAI Yunfeng, et al. Research progress of MXenes for second near-infrared window photothermal diagnosis and therpay of tumors[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4026-4038. doi: 10.13801/j.cnki.fhclxb.20231220.002

Research progress of MXenes for second near-infrared window photothermal diagnosis and therpay of tumors

doi: 10.13801/j.cnki.fhclxb.20231220.002
Funds:  Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi (2020KJ023); Shanxi Scholarship Council of China (2020-133); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2021L368; 2022L424); Fundamental Research Program of Shanxi Province (202303021211324); Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (20230036); Fundamental Research Program of Datong City (2023065); Fundamental Research Program of Shanxi Datong University (2022K18); Post Graduate Science and Technology Innovation Project of Shanxi Datong University (22CX14)
  • Received Date: 2023-10-27
  • Accepted Date: 2023-12-09
  • Rev Recd Date: 2023-11-23
  • Available Online: 2023-12-20
  • Publish Date: 2024-08-01
  • Photothermal tumor therapy with second near-infrared (NIR-II, 1000-1350 nm) phototriggered photothermal agents is a promising emerging method of tumor therapy. Transition metal carbides, nitrides, and carbonitridges compounds (MXenes) have advantages such as ultra-thin layered structure, unique electronic properties, large specific surface area, high photothermal conversion efficiency, good hydrophilicity, and easy surface functionalization, making them suitable as photothermal agents for tumor photothermal therapy. This review introduces the advantages of NIR-II photothermal therapy, summarizes the photothermal performance of MXenes and the stability of MXenes colloidal solution. At the same time, the research progress of MXenes in NIR-II tumor photothermal therapy was discussed, and the challenges and opportunities faced in the future development of this field were elaborated.

     

  • loading
  • [1]
    HUANG H, WEI F, CHEN Y. Two-dimensional biomaterials: Material science, biological effect and biomedical engineering applications[J]. Chemical Society Reviews, 2021, 50(20): 11381-11485.
    [2]
    NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23 (37): 4248-4253.
    [3]
    NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2): 1322-1331.
    [4]
    POGORIELOV M, SMYRNOVA K, KYRYLENKO S, et al. MXenes—A new class of two-dimensional materials: Structure, properties and potential applications[J]. Nanomaterials, 2021, 11(12): 3412.
    [5]
    HUANG H, DONG C, FENG W, et al. Biomedical engineering of two-dimensional MXenes[J]. Advanced Drug Delivery Reviews, 2022, 184: 114178.
    [6]
    IRAVANI S, VARMA R S. MXenes in cancer nanotheranostics[J]. Nanomaterials, 2022, 12(19): 3360.
    [7]
    SHAO J D, XIE H H, HUANG H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy[J]. Nature Communications, 2016, 7(1): 12967.
    [8]
    WANG Z, LI H, SHE W, et al. 3-bromopyruvate-loaded Ti3C2 MXene/Cu2O nanosheets for photoacoustic imaging-guided and hypoxia-relieving enhanced photothermal/chemodynamic therapy[J]. Analytical Chemistry, 2023, 95(2): 1710-1720.
    [9]
    ZHU H, ZHANG X Q, WANG Q S, et al. In situ assembled titanium carbide-based heterojunctions for the synergistic enhancement of NIR-II photothermal/photodynamic therapy against breast cancer[J]. Journal of Materials Chemistry B, 2022, 10(48): 10083-10096.
    [10]
    GAO W, ZHANG W H, YU H P, et al. 3D CNT/MXene microspheres for combined photothermal/photodynamic/chemo for cancer treatment[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 996177.
    [11]
    ZAMHURI A, LIM G P, MA N L, et al. MXene in the lens of biomedical engineering: Synthesis, applications and future outlook[J]. Biomedical Engineering Online, 2021, 20(1): 33.
    [12]
    JIANG Y Y, LI J C, ZHEN X, et al. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: A comparative study[J]. Advanced Materials, 2018, 30(14): 5980-5987.
    [13]
    LYU Y, LI J, PU K. Second near-infrared absorbing agents for photoacoustic imaging and photothermal therapy[J]. Small Methods, 2019, 3(11): 1900553.
    [14]
    AN D, FU J Y, ZHANG B, et al. NIR-II responsive inorganic 2D nanomaterials for cancer photothermal therapy: Recent advances and future challenges[J]. Advanced Functional Materials, 2021, 31(32): 2101625.
    [15]
    LIN H, WANG X G, YU L D, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 2017, 17(1): 384-391.
    [16]
    LU B B, ZHU Z Y, MA B Y, et al. 2D MXene nanomaterials for versatile biomedical applications: Current trends and future prospects[J]. Small, 2021, 17(46): 2100946.
    [17]
    LIU Y J, BHATTARAI P, DAI Z F, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chemical Society Reviews, 2019, 48(7): 2053-2108.
    [18]
    XU Y, WANG Y, AN J, et al. 2D-ultrathin MXene DOXjade platform for iron chelation chemo-photothermal therapy[J]. Bioactive Materials, 2022, 14: 76-85.
    [19]
    LIANG R J, LI Y S, HUO M F, et al. Triggering sequential catalytic fenton reaction on 2D MXenes for hyperthermia-augmented synergistic nanocatalytic cancer therapy[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 42917-42931.
    [20]
    SHI T, HUANG C, LI Y, et al. NIR-II phototherapy agents with aggregation-induced emission characteristics for tumor imaging and therapy[J]. Biomaterials, 2022, 285: 121535.
    [21]
    LI Z, ZHANG C, ZHANG X, et al. NIR-II functional materials for photoacoustic theranostics[J]. Bioconjugate Chemistry, 2022, 33(1): 67-86.
    [22]
    DAI H, WANG X, SHAO J, et al. NIR-II organic nanotheranostics for precision oncotherapy[J]. Small, 2021, 17(44): 2102646.
    [23]
    JIANG S, HUANG K, QU J, et al. Cancer nanotheranostics in the second near-infrared window[J]. View, 2021, 2(1): 20200075.
    [24]
    XU C, PU K Y. Second near-infrared photothermal materials for combinational nanotheranostics[J]. Chemical Society Reviews, 2021, 50(2): 1111-1137.
    [25]
    MALESKI K, SHUCK C E, FAFARMAN A T, et al. The broad chromatic range of two-dimensional transition metal carbides[J]. Advanced Optical Materials, 2021, 9(4): 2001563.
    [26]
    LIN H, CHEN Y, SHI J L. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead[J]. Advanced Science, 2018, 5(10): 1800518.
    [27]
    LIN H, GAO S S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society, 2017, 139(45): 16235-16247.
    [28]
    LU Y, ZHANG X G, HOU X Q, et al. Functionalized 2D Nb2C nanosheets for primary and recurrent cancer photothermal/immune-therapy in the NIR-II biowindow[J]. Nanoscale, 2021, 13(42): 17822-17836.
    [29]
    FENG W, WANG R, ZHOU Y, et al. Ultrathin molybdenum carbide mxene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia[J]. Advanced Functional Materials, 2019, 29(22): 1942-1957.
    [30]
    CAO Y, WU T, ZHANG K, et al. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy[J]. ACS Nano, 2019, 13(2): 1499-1510.
    [31]
    ZHOU B, YIN H, DONG C, et al. Biodegradable and excretable 2D W1.33C i-MXene with vacancy ordering for theory-oriented cancer nanotheranostics in near-infrared biowindow[J]. Advanced Science, 2021, 8(24): 2101043.
    [32]
    XU D X, LI Z D, LI L S, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: Synthesis, mechanism, and applications[J]. Advanced Functional Materials, 2020, 30(47): 2000712.
    [33]
    ZHAO J, XUE S, JI R, et al. Localized surface plasmon resonance for enhanced electrocatalysis[J]. Chemical Society Reviews, 2021, 50(21): 12070-12097.
    [34]
    AN D, FU J, ZHANG B, et al. NIR-II responsive inorganic 2D nanomaterials for cancer photothermal therapy: Recent advances and future challenges[J]. Advanced Functional Materials, 2021, 3(32): 2101625.
    [35]
    ZHANG L, OUDENG G, WEN F Q, et al. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment[J]. Biomaterials Research, 2022, 26(1): 61.
    [36]
    FAN X Q, LIU L, JIN X, et al. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability[J]. Journal of Materials Chemistry A, 2019, 7(23): 14319-14327.
    [37]
    LIU G, ZOU J, TANG Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40077-40086.
    [38]
    KUMAR P. Ultrathin 2D nanomaterials for electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2019, 6(24): 1901454.
    [39]
    SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140.
    [40]
    JIANG J Z, BAI S S, ZOU J, et al. Improving stability MXenes[J]. Nano Research, 2022, 15(7): 6551-6567.
    [41]
    PALISAITIS J, PERSSON I, HALIM J, et al. On the structural stability of MXene and the role of transition metal adatoms[J]. Nanoscale, 2018, 10(23): 10850-10855.
    [42]
    ZHANG J Z, KONG N, HEGH D, et al. Freezing titanium carbide aqueous dispersions for ultra-long-term storage[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 34032-34040.
    [43]
    PENG C, YANG X, LI Y, et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 6051-6060.
    [44]
    DONG L M, YE C, ZHENG L L, et al. Two-dimensional metal carbides and nitrides (MXenes): Preparation, property, and applications in cancer therapy[J]. Nanophotonics, 2020, 9(8): 2125-2145.
    [45]
    ZHANG C J, PINILLA S, MCEYOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials, 2017, 29(11): 4848-4856.
    [46]
    HUANG S, MOCHALIN V N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions[J]. Inorganic Chemistry, 2019, 58(3): 1958-1966.
    [47]
    HUANG S, MOCHALIN V N. Understanding chemistry of two-dimensional transition metal carbides and carbonitrides (MXenes) with gas analysis[J]. ACS Nano, 2020, 14(8): 10251-10257.
    [48]
    ZHAO X, VASHISTH A, PREHN E, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions[J]. Matter, 2019, 1(2): 513-526.
    [49]
    PENG J, CHENG H, LIU J, et al. Superhydrophobic MXene-based fabric with electromagnetic interference shielding and thermal management ability for flexible sensors[J]. Advanced Fiber Materials, 2023, 5(6): 2099-2113.
    [50]
    WANG X Y, WANG Z Y, QIU J S. Stabilizing MXene by hydration chemistry in aqueous solution[J]. Angewandte Chemie International Edition, 2021, 60(51): 26587-26591.
    [51]
    MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials, 2017, 29(4): 1632-1640.
    [52]
    CHAE Y, KIM S J, CHO S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene[J]. Nanoscale, 2019, 11(17): 8387-8393.
    [53]
    MATHIS T S, MALESKI K, GOAD A, et al. Modified max phase synthesis for environmentally stable and highly conductive Ti3C2 MXene[J]. ACS Nano, 2021, 15(4): 6420-6429.
    [54]
    CHENG L, WANG X, GONG F, et al. 2D nanomaterials for cancer theranostic applications[J]. Advanced Materials, 2020, 32(13): 1902333.
    [55]
    HUANG Z, CUI X, LI S, et al. Two-dimensional MXene-based materials for photothermal therapy[J]. Nanophotonics, 2020, 9(8): 2233-2249.
    [56]
    HU J J, CHENG Y J, ZHANG X Z. Recent advances in nanomaterials for enhanced photothermal therapy of tumors[J]. Nanoscale, 2018, 10(48): 22657-22672.
    [57]
    HUANG K, LI Z J, LIN J, et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications[J]. Chemical Society Reviews, 2018, 47(14): 5109-5124.
    [58]
    ZHU Y H, TANG X F, LIU Q, et al. Metallic carbonitride MXene based photonic hyperthermia for tumor therapy[J]. Small, 2022, 18(22): 2200646.
    [59]
    LIU Z, ZHAO M L, YU L D, et al. Redox chemistry-enabled stepwise surface dual nanoparticle engineering of 2D MXenes for tumor-sensitive T-1 and T-2 MRI-guided photonic breast-cancer hyperthermia in the NIR-II biowindow[J]. Biomaterials Science, 2022, 10(6): 1562-1574.
    [60]
    SHAO J D, ZHANG J, JIANG C, et al. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows[J]. Chemical Engineering Journal, 2020, 400: 126009.
    [61]
    ZHOU B, PU Y, LIN H, et al. In situphase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window[J]. Journal of Materials Chemistry B, 2020, 8(24): 5257-5266.
    [62]
    LIN S Y, LIN H, YANG M, et al. A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow[J]. Nanoscale, 2020, 12(18): 10265-10276.
    [63]
    HAN X X, JING X X, YANG D Y, et al. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow[J]. Theranostics, 2018, 8(16): 4491-4508.
    [64]
    GAO S S, LU X Y, ZHU P, et al. Self-evolved hydrogen peroxide boosts photothermal-promoted tumor-specific nanocatalytic therapy[J]. Journal of Materials Chemistry B, 2019, 7(22): 3599-3609.
    [65]
    HAO Z N, LI Y F, LIU X Y, et al. Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow[J]. Chemical Engineering Journal, 2021, 425: 130639.
    [66]
    WANG A, MAO Q, ZHAO M, et al. pH/reduction dual stimuli-triggered self-assembly of NIR theranostic probes for enhanced dual-modal imaging and photothermal therapy of tumors[J]. Analytical Chemistry, 2020, 92(24): 16113-16121.
    [67]
    SUN R, ZHANG Y Q, GAO Y J, et al. A tumor-targetable NIR probe with photoaffinity crosslinking characteristics for enhanced imaging-guided cancer phototherapy[J]. Chemical Science, 2023, 14(9): 2369-2378.
    [68]
    ZHU Y, WANG Z, ZHAO R, et al. Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics[J]. ACS Nano, 2022, 16(2): 3105-3118.
    [69]
    GONG F, YANG N, WANG X, et al. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics[J]. Nano Today, 2020, 32: 100851.
    [70]
    ZHANG Y, LI S, FANG X, et al. Copper decorated Ti3C2 nanosystem with NIR-II-induced gsh-depletion and reactive oxygen species generation for efficient nanodynamic therapy[J]. Nanophotonics, 2022, 11(22): 5189-5204.
    [71]
    HU H, FENG W, QIAN X, et al. Emerging nanomedicine-enabled/enhanced nanodynamic therapies beyond traditional photodynamics[J]. Advanced Materials, 2021, 33(12): 2005062.
    [72]
    XIANG H J, LIN H, YU L D, et al. Hypoxia-irrelevant photonic thermodynamic cancer nanomedicine[J]. ACS Nano, 2019, 13(2): 2223-2235.
    [73]
    XU J, CHEN L, DING S, et al. Self-generated schottky barriers in niobium carbide MXene nanocatalysts for theory-oriented sonocatalytic and NIR-II photonic hyperthermia tumor therapy[J]. Nano Today, 2023, 48: 101750.
    [74]
    YIN H, GUAN X, LIN H, et al. Nanomedicine-enabled photonic thermogaseous cancer therapy[J]. Advanced Science, 2020, 7(2): 1901954.
    [75]
    TANG W T, DONG Z L, ZHANG R, et al. Multifunctional two-dimensional core-shell MXene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window[J]. ACS Nano, 2019, 13(1): 284-294.
    [76]
    ZHANG D, LIU H, YOUNIS M R, et al. In situ TiO2−x decoration of titanium carbide MXene for photo/sono-responsive antitumor theranostics[J]. Journal of Nanobiotechnology, 2022, 20(1): 53.
    [77]
    TAO N, LIU Y, WU Y, et al. Minimally invasive antitumor therapy using biodegradable nanocomposite micellar hydrogel with functionalities of NIR-II photothermal ablation and vascular disruption[J]. ACS Applied Bio Materials, 2020, 3(7): 4531-4542.
    [78]
    LI G Q, ZHONG X Y, WANG X W, et al. Titanium carbide nanosheets with defect structure for photothermal-enhanced sonodynamic therapy[J]. Bioactive Materials, 2022, 8: 409-419.
    [79]
    GENG B, XU S, SHEN L, et al. Multifunctional carbon dot/MXene heterojunctions for alleviation of tumor hypoxia and enhanced sonodynamic therapy[J]. Carbon, 2021, 179: 493-504.
    [80]
    KONG F L, FANG C, ZHANG Y, et al. Abundance and metabolism disruptions of intratumoral microbiota by chemical and physical actions unfreeze tumor treatment resistance[J]. Advanced Science, 2022, 9(7): 2105523.
    [81]
    CHAO M, DI P, YUAN Y, et al. Flexible breathable photothermal-therapy epidermic sensor with MXene for ultrasensitive wearable human-machine interaction[J]. Nano Energy, 2023, 108: 108201.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (282) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return