Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
LIAN Weiqiang, ZHAO Xiaojia, PENG Guirong, et al. Preparation and self-healing property of phenolic modified epoxy vitrimer[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4058-4072. doi: 10.13801/j.cnki.fhclxb.20231218.004
Citation: LIAN Weiqiang, ZHAO Xiaojia, PENG Guirong, et al. Preparation and self-healing property of phenolic modified epoxy vitrimer[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4058-4072. doi: 10.13801/j.cnki.fhclxb.20231218.004

Preparation and self-healing property of phenolic modified epoxy vitrimer

doi: 10.13801/j.cnki.fhclxb.20231218.004
  • Received Date: 2023-10-20
  • Accepted Date: 2023-12-09
  • Rev Recd Date: 2023-11-27
  • Available Online: 2023-12-19
  • Publish Date: 2024-08-01
  • Vitrimer can undergo plastic deformation while maintaining a cross-linked state, which means that traditional thermosetting resins have the ability to undergo secondary thermal processing and molding, which will effectively reduce scrap rates and reduce waste from the beginning. The plastic deformation of vitrimer can also endow item self-healing ability and extended its service life, and so contribute to environmental protection and emission reduction. In the paper stannous iso-octanoate as a catalyst and phenolic resin as a modifier was used to prepare anhydride cured epoxy vitrimer materials. The research results indicate that the increase in catalyst content could make the system cure more completely, so there is a certain improvement in the bending strength of the material, up to 87.5 MPa. With introduction of phenolic resin, the bending strength increases from 87.5 MPa before modification to 126.9 MPa, and the tensile strength reaches 63.3 MPa. When the amount of phenolic resin added is too high, the crosslinking density of the material decreases, and the mechanical properties of the material show a downward trend. The study on the relaxation behavior of the epoxy vitrimer system cured with pure anhydride shows that increasing the catalyst content reduces the relaxation time of the materials, but the post curing reaction at high temperature could inhibit the relaxation process and suppress the self-welding strength. The stress relaxation of epoxy vitrimer material modified with phenolic resin is significantly faster than that of epoxy vitrimer system cured with pure anhydride. The relaxation of the samples with 10mol% catalyst shows a sudden change, and there is a significant acceleration when the temperature rises to 190℃, and the introduction of phenolic resin could advance the sudden change temperature Ts to 180℃. Under no pressure conditions, scratches are repaired. The tensile shear strength and scratches repair effect of the samples repaired above Ts are significantly improved. Compared to samples without phenolic resin, phenolic modified samples could be repaired better. Catalyst have a significant impact on the repair strength and repair speed of the samples.

     

  • loading
  • [1]
    KUMAR PATEL K, PUROHIT R. Future prospects of shape memory polymer nano-composite and epoxy based shape memory polymer-A review[J]. Materials Today: Proceedings, 2018, 5(9): 20193-20200. doi: 10.1016/j.matpr.2018.06.389
    [2]
    MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968.
    [3]
    CAPELOT M, UNTERLASS M M, TOURNILHAC F, et al. Catalytic control of the vitrimer glass transition[J]. ACS Macro Letters, 2012, 1(7): 789-792.
    [4]
    CAPELOT M, MONTARNAL D, TOURNILHAC F, et al. Metal-catalyzed transesterification for healing and assembling of thermosets[J]. Journal of the American Chemical Society, 2012, 134(18): 7664-7667.
    [5]
    WINNE J M, LEIBLER L, DU PREZ F E. Dynamic covalent chemistry in polymer networks: A mechanistic perspective[J]. Polymer Chemistry, 2019, 10(45): 6091-6108.
    [6]
    DENISSEN W, DROESBEKE M, NICOLAŸ R, et al. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers[J]. Nature Communications, 2017, 8: 14857.
    [7]
    CHEN Z Q, SHI Q, KUANG X, et al. Ultrastrong intrinsic bonding for thermoset composites via bond exchange reactions[J]. Composites Part B: Engineering, 2020, 194: 108054.
    [8]
    AZCUNE I, ELORZA E, RUIZ DE LUZURIAGA A, et al. Analysis of the effect of network structure and disulfide concentration on vitrimer properties[J]. Polymers, 2023, 15(20): 4123. doi: 10.3390/polym15204123
    [9]
    杨伟明, 席澳千, 杨斌, 等. 基于多重动态共价键的环氧类玻璃网络的制备与性能[J]. 高等学校化学学报, 2022, 43(11): 12-22.

    YANG Weiming, XI Aoqian, YANG Bin, et al. Fabrication and properties of epoxy vitrimer based on multiply dynamic covalent bonds[J]. Chemical Journal of Chinese Universities, 2022, 43(11): 12-22(in Chinese).
    [10]
    LUO Z Y, YANG B, LIU F Q, et al. Recoverable rosin-based epoxy vitrimers with robust mechanical properties and high thermostability[J]. ACS Applied Polymer Materials, 2023, 5(10): 8670-8678. doi: 10.1021/acsapm.3c01373
    [11]
    LUO C M, WANG W C, YANG W, et al. High-strength and multi-recyclable epoxy vitrimer containing dual-dynamic covalent bonds based on the disulfide and imine bond metathesis[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(39): 14591-14600.
    [12]
    DENISSEN W, WINNE J M, DU PREZ F E. Vitrimers: Permanent organic networks with glass-like fluidity[J]. Chemical Science, 2016, 7(1): 30-38.
    [13]
    YANG Y, XU Y S, JI Y, et al. Functional epoxy vitrimers and composites[J]. Progress in Materials Science, 2021, 120: 100710. doi: 10.1016/j.pmatsci.2020.100710
    [14]
    GUERRE M, TAPLAN C, WINNE J M, et al. Vitrimers: Directing chemical reactivity to control material properties[J]. Chemical Science, 2020, 11(19): 4855-4870.
    [15]
    LUO J C, DEMCHUK Z, ZHAO X, et al. Elastic vitrimers: Beyond thermoplastic and thermoset elastomers[J]. Matter, 2022, 5(5): 1391-1422.
    [16]
    ZHANG Z P, RONG M Z, ZHANG M Q. Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities[J]. Progress in Polymer Science, 2018, 80: 39-93. doi: 10.1016/j.progpolymsci.2018.03.002
    [17]
    BRUTMAN J P, DELGADO P A, HILLMYER M A. Polylactide vitrimers[J]. ACS Macro Letters, 2014, 3(7): 607-610.
    [18]
    YAN P Y, ZHAO W, FU X W, et al. Multifunctional polyurethane-vitrimers completely based on transcarbamoylation of carbamates: Thermally-induced dual-shape memory effect and self-welding[J]. RSC Advances, 2017, 7(43): 26858-26866.
    [19]
    DENISSEN W, RIVERO G, NICOLAŸ R, et al. Vinylogous urethane vitrimers[J]. Advanced Functional Materials, 2015, 25(16): 2451-2457.
    [20]
    RUIZ DE LUZURIAGA A, MARTIN R, MARKAIDE N, et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites[J]. Materials Horizons, 2016, 3(3): 241-247.
    [21]
    SCHENK V, D'ELIA R, OLIVIER P, et al. Exploring the limits of high-Tg epoxy vitrimers produced through resin-transfer molding[J]. ACS Applied Materials & Interfaces, 2023, 15(39): 46357-46367.
    [22]
    WU X, YANG X, YU R, et al. A facile access to stiff epoxy vitrimers with excellent mechanical properties via siloxane equilibration[J]. Journal of Materials Chemistry A, 2018, 6(22): 10184-10188.
    [23]
    HAN J R, LIU T, HAO C, et al. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer[J]. Macromolecules, 2018, 51(17): 6789-6799.
    [24]
    VAIDYULA R R, DUGAS P Y, RAWSTRON E, et al. Improved malleability of miniemulsion-based vitrimers through in situ generation of carboxylate surfactants[J]. Polymer Chemistry, 2019, 10(23): 3001-3005.
    [25]
    SANGALETTI D, CESERACCIU L, MARINI L, et al. Biobased boronic ester vitrimer resin from epoxidized linseed oil for recyclable carbon fiber composites[J]. Resources, Conservation and Recycling, 2023, 198: 107205.
    [26]
    PODGÓRSKI M, FAIRBANKS B D, KIRKPATRICK B E, et al. Toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks (CANs)[J]. Advanced Materials, 2020, 32(20): 1906876.
    [27]
    LIU W H, SCHMIDT D F, REYNAUD E. Catalyst selection, creep, and stress relaxation in high-performance epoxy vitrimers[J]. Industrial & Engineering Chemistry Research, 2017, 56(10): 2667-2672.
    [28]
    SCHEUTZ G M, LESSARD J J, SIMS M B, et al. Adaptable crosslinks in polymeric materials: Resolving the intersection of thermoplastics and thermosets[J]. Journal of the American Chemical Society, 2019, 141(41): 16181-16196.
    [29]
    YANG Y, PENG G R, WU S, et al. A repairable anhydride-epoxy system with high mechanical properties inspired by vitrimers[J]. Polymer, 2018, 159: 162-168.
    [30]
    中国国家标准化管理委员会. 塑料弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics-determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [31]
    FENG Y, NIE Z G, CHEN J Q, et al. Tuning the dynamic properties of epoxy vitrimers via bioinspired polymer-nanoparticle bond dynamics[J]. ACS Macro Letters, 2023, 12(9): 1201-1206. doi: 10.1021/acsmacrolett.3c00406
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(4)

    Article Metrics

    Article views (430) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return