Volume 41 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
LIU Sicong, LIU Hongzhi, YIN Yaran. Research advances in 3D printed bone tissue engineering scaffolds based on biodegradable polyester/bioceramics[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1672-1693. doi: 10.13801/j.cnki.fhclxb.20231211.002
Citation: LIU Sicong, LIU Hongzhi, YIN Yaran. Research advances in 3D printed bone tissue engineering scaffolds based on biodegradable polyester/bioceramics[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1672-1693. doi: 10.13801/j.cnki.fhclxb.20231211.002

Research advances in 3D printed bone tissue engineering scaffolds based on biodegradable polyester/bioceramics

doi: 10.13801/j.cnki.fhclxb.20231211.002
Funds:  National Natural Science Foundation of China (52373107; 51573169); Zhejiang Provincial Natural Science Foundation of China (LY15E030007); Ningbo "3315 Innovative Team" Project
  • Received Date: 2023-10-07
  • Accepted Date: 2023-12-01
  • Rev Recd Date: 2023-11-16
  • Available Online: 2023-12-12
  • Publish Date: 2024-04-15
  • Transplantation of bone implants is currently recognized as one of the effective means treating bone defects. Biodegradable polyester/bioceramics composites combine good mechanical and degradable properties of biodegradable polyester with the osteogenic activity of bioceramics, thereby providing a new alternative for bone implant materials. Bone tissue engineering accelerates bone defect repair by simulating the bone microenvironment. The fabrication of biodegradable polyester/bioceramics composites into bone tissue engineering scaffolds can further accelerate the process of bone repair, and the introduction of 3D printing technology enables the preparation of biodegradable polyester/bioceramics bone tissue engineering scaffolds more precise, reproducible, and flexible, which exhibits very promising development. This review presents physical properties of bone tissue engineering scaffolds, summarizes the strategies from domestic and foreign scholars to improve the performance of bone tissue engineering scaffolds based on biodegradable polyester/bioceramics composite in recent years. Besides, the future development perspectives in this field are proposed in the field of research.

     

  • loading
  • [1]
    WANG W, YEUNG K W K. Bone grafts and biomaterials substitutes for bone defect repair: A review[J]. Bioactive Materials, 2017, 2(4): 224-247. doi: 10.1016/j.bioactmat.2017.05.007
    [2]
    GIANNOUDIS P V, DINOPOULOS H, TSIRIDIS E. Bone substitutes: An update[J]. Injury, 2005, 36: S20-S27.
    [3]
    TAKIZAWA T, NAKAYAMA N, HANIU H, et al. Titanium fiber plates for bone tissue repair[J]. Advanced Materials, 2018, 30(4): 1703608. doi: 10.1002/adma.201703608
    [4]
    DIMITRIOU R, MATALIOTAKIS G I, ANGOULES A G, et al. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review[J]. Injury, 2011, 42: S3-S15.
    [5]
    BERGSMA E J, ROZEMA F R, BOS R R, et al. Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures[J]. Journal of Oral and Maxillofacial Surgery, 1993, 51(6): 666-670.
    [6]
    SURMENEVA M A, CHAIKINA M V, ZAIKOVSKIY V, et al. The structure of an RF-magnetron sputter-deposited silicate-containing hydroxyapatite-based coating investigated by high-resolution techniques[J]. Surface & Coatings Technology, 2013, 218: 39-46.
    [7]
    LEGEROS R Z. Calcium phosphate materials in restorative dentistry: A review[J]. Advances in Dental Research, 1988, 2(1): 164-180. doi: 10.1177/08959374880020011101
    [8]
    LEBEDEV S M, GEFLE O S, AMITOV E T, et al. Mechanical properties of PLA-based composites for fused deposition modeling technology[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1): 511-518.
    [9]
    REN X, LIU Q, ZHENG S, et al. Synergistic delivery of bFGF and BMP-2 from poly(L-lactic-co-glycolic acid)/graphene oxide/hydroxyapatite nanofibre scaffolds for bone tissue engineering applications[J]. RSC Advances, 2018, 8(56): 31911-31923. doi: 10.1039/C8RA05250F
    [10]
    COSTANTINI M, BARBETTA A. 6-gas foaming technologies for 3D scaffold engineering[M]//DENG Y, KUIPER J. Functional 3D Tissue Engineering Scaffolds. Cambridge: Woodhead Publishing, 2018: 127-149.
    [11]
    COOPER A I. Polymer synthesis and processing using supercritical carbon dioxide[J]. Journal of Materials Chemistry, 2000, 10(2): 207-234. doi: 10.1039/a906486i
    [12]
    PANKONGADISAK P, JAIKAEW N, KITI K, et al. The potential use of gentamicin sulfate-loaded poly(L-lactic acid)-sericin hybrid scaffolds for bone tissue engineering[J]. Polymer Bulletin, 2019, 76(6): 2867-2885. doi: 10.1007/s00289-018-2520-x
    [13]
    BUZAROVSKA A, DINESCU S, CHITOIU L, et al. Porous poly(L-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles: Properties, cytocompatibility and drug release capability[J]. Journal of Materials Science, 2018, 53(16): 11151-11166. doi: 10.1007/s10853-018-2415-0
    [14]
    PUPPI D, CHIELLINI F, PIRAS A M, et al. Polymeric materials for bone and cartilage repair[J]. Progress in Polymer Science, 2010, 35(4): 403-440. doi: 10.1016/j.progpolymsci.2010.01.006
    [15]
    ZHANG X, CHEN J L, XING F, et al. Three-dimensional printed polylactic acid and hydroxyapatite composite scaffold with urine-derived stem cells as a treatment for bone defects[J]. Journal of Materials Science: Materials in Medicine, 2022, 33(10): 71. doi: 10.1007/s10856-022-06686-z
    [16]
    SENATOV F S, NIAZA K V, ZADOROZHNYY M Y, et al. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57: 139-148. doi: 10.1016/j.jmbbm.2015.11.036
    [17]
    HEIDARI-RARANI M, RAFIEE-AFARANI M, ZAHEDI A M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites[J]. Composites Part B: Engineering, 2019, 175: 107147. doi: 10.1016/j.compositesb.2019.107147
    [18]
    CHINNASAMI H, DEY M K, DEVIREDDY R. Three-dimensional scaffolds for bone tissue engineering[J]. Bioengineering (Basel), 2023, 10(7): 759. doi: 10.3390/bioengineering10070759
    [19]
    SHUAI C, YANG F, SHUAI Y, et al. Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly(L-lactic acid) scaffold[J]. Journal of Advanced Research, 2023, 48: 175-190. doi: 10.1016/j.jare.2022.08.017
    [20]
    ZHOU X, ZHOU G, JUNKA R, et al. Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration[J]. Colloids and Surfaces B: Biointerfaces, 2021, 197: 111420. doi: 10.1016/j.colsurfb.2020.111420
    [21]
    ZHAO D, WANG Y, YU Z, et al. Co-culture bioprinting of tissue-engineered bone-periosteum biphasic complex for repairing critical-sized skull defects in rabbits[J]. International Journal of Bioprinting, 2023, 9: 698. doi: 10.18063/ijb.698
    [22]
    KOONS G L, DIBA M, MIKOS A G. Materials design for bone-tissue engineering[J]. Nature Reviews Materials, 2020, 5(8): 584-603. doi: 10.1038/s41578-020-0204-2
    [23]
    TRIVEDI A K, GUPTA M K, SINGH H. PLA based biocomposites for sustainable products: A review[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(4): 382-395. doi: 10.1016/j.aiepr.2023.02.002
    [24]
    SMIESZEK A, TOMASZEWSKI K A, KORNICKA K, et al. Metformin promotes osteogenic differentiation of adipose-derived stromal cells and exerts pro-osteogenic effect stimulating bone regeneration[J]. Journal of Clinical Medicine, 2018, 7(12): 482. doi: 10.3390/jcm7120482
    [25]
    CHEN X, FAN H, DENG X, et al. Scaffold structural microenvironmental cues to guide tissue regeneration in bone tissue applications[J]. Nanomaterials (Basel), 2018, 8(11): 960. doi: 10.3390/nano8110960
    [26]
    WUBNEH A, TSEKOURA E K, AYRANCI C, et al. Current state of fabrication technologies and materials for bone tissue engineering[J]. Acta Biomaterialia, 2018, 80: 1-30. doi: 10.1016/j.actbio.2018.09.031
    [27]
    YANG W F, LONG L, WANG R, et al. Surface-modified hydroxyapatite nanoparticle-reinforced polylactides for three-dimensional printed bone tissue engineering scaffolds[J]. Journal of Biomedical Nanotechnology, 2018, 14(2): 294-303. doi: 10.1166/jbn.2018.2495
    [28]
    ZHANG B, WANG L, SONG P, et al. 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations[J]. Materials & Design, 2021, 201: 109490.
    [29]
    CÉ DE ANDRADE J, CABRAL F, CLEMENS F J, et al. Effect of stearic acid on the mechanical and rheological properties of PLA/HA biocomposites[J]. Materials Today Communications, 2023, 35: 106357. doi: 10.1016/j.mtcomm.2023.106357
    [30]
    SONG X, GUAN W, QIN H, et al. Properties of poly(lactic acid)/walnut shell/hydroxyapatite composites prepared with fused deposition modeling[J]. Scientific Reports, 2022, 12(1): 11563. doi: 10.1038/s41598-022-15622-8
    [31]
    WANG G, QIAN G, ZAN J, et al. A co-dispersion nanosystem of graphene oxide@silicon-doped hydroxyapatite to improve scaffold properties[J]. Materials & Design, 2021, 199: 109399.
    [32]
    KONTOGIANNI G I, BONATTI A F, DE MARIA C, et al. Promotion of in vitro osteogenic activity by melt extrusion-based PLLA/PCL/PHBV scaffolds enriched with nano-hydroxyapatite and strontium substituted nano-hydroxyapatite[J]. Polymers (Basel), 2023, 15(4): 1052. doi: 10.3390/polym15041052
    [33]
    SAHMANI S, KHANDAN A, SABER-SAMANDARI S, et al. Fabrication and resonance simulation of 3D-printed biocomposite mesoporous implants with different periodic cellular topologies[J]. Bioprinting, 2021, 22: e00138. doi: 10.1016/j.bprint.2021.e00138
    [34]
    PREMPHET P, LEKSAKUL K, BOONYAWAN D, et al. Process parameters optimization and mechanical properties of 3D PLA/HA printing scaffold[J]. Materials Today: Proceedings, 2023, 4: 124.
    [35]
    HWANGBO H, LEE J, KIM G. Mechanically and biologically enhanced 3D-printed HA/PLLA/dECM biocomposites for bone tissue engineering[J]. International Journal of Biological Macromolecules, 2022, 218: 9-21. doi: 10.1016/j.ijbiomac.2022.07.040
    [36]
    PÉREZ-DAVILA S, GARRIDO-GULÍAS N, GONZÁLEZ-RODRÍGUEZ L, et al. Physicochemical properties of 3D-printed polylactic acid/hydroxyapatite scaffolds[J]. Polymers (Basel), 2023, 15(13): 2849. doi: 10.3390/polym15132849
    [37]
    FU Z, CUI J, ZHAO B, et al. An overview of polyester/hydroxyapatite composites for bone tissue repairing[J]. Journal of Orthopaedic Translation, 2021, 28: 118-130. doi: 10.1016/j.jot.2021.02.005
    [38]
    BACKES E H, FERNANDES E M, DIOGO G S, et al. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration[J]. Materials Science and Engineering: C, 2021, 122: 111928. doi: 10.1016/j.msec.2021.111928
    [39]
    SHUAI C J, YANG W J, FENG P, et al. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity[J]. Bioactive Materials, 2021, 6(2): 490-502. doi: 10.1016/j.bioactmat.2020.09.001
    [40]
    FENG P, PENG S, SHUAI C, et al. In situ generation of hydroxyapatite on biopolymer particles for fabrication of bone scaffolds owning bioactivity[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46743-46755.
    [41]
    BAHRAMINASAB M, DOOSTMOHAMMADI N, TALEBI A, et al. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration[J]. BioMedical Engineering OnLine, 2022, 21(1): 86. doi: 10.1186/s12938-022-01056-w
    [42]
    NARAYANAN G, VERNEKAR V N, KUYINU E L, et al. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering[J]. Advanced Drug Delivery Reviews, 2016, 107: 247-276. doi: 10.1016/j.addr.2016.04.015
    [43]
    CHIA H N, WU B M. Recent advances in 3D printing of biomaterials[J]. Journal of Biological Engineering, 2015, 9: 4. doi: 10.1186/s13036-015-0001-4
    [44]
    HARRIS J S, BEMENDERFER T B, WESSEL A R, et al. A review of mouse critical size defect models in weight bearing bones[J]. Bone, 2013, 55(1): 241-247. doi: 10.1016/j.bone.2013.02.002
    [45]
    WEI L, WU S, KUSS M, et al. 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering[J]. Bioactive Materials, 2019, 4: 256-260. doi: 10.1016/j.bioactmat.2019.09.001
    [46]
    MARTIN V, RIBEIRO I A, ALVES M M, et al. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanohydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration[J]. Materials Science and Engineering: C, 2019, 101: 15-26. doi: 10.1016/j.msec.2019.03.056
    [47]
    YANG Y, CHENG Y, DENG F, et al. A bifunctional bone scaffold combines osteogenesis and antibacterial activity via in situ grown hydroxyapatite and silver nanoparticles[J]. Bio-Design and Manufacturing, 2021, 4(3): 452-468. doi: 10.1007/s42242-021-00130-x
    [48]
    MARYCZ K, SMIESZEK A, TARGONSKA S, et al. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium(III) ions (nHAp/PLLA@Eu3+) composite for osteochondral defect regeneration and theranostics[J]. Materials Science and Engineering: C, 2020, 110: 110634. doi: 10.1016/j.msec.2020.110634
    [49]
    ZHENG H, SUN Z, ZHANG H. Effects of walnut shell powders on the morphology and the thermal and mechanical properties of poly(lactic acid)[J]. Journal of Thermoplastic Composite Materials, 2019, 33(10): 1383-1395.
    [50]
    FERREIRA F V, BRITO F S, FRANCESCHI W, et al. Functionalized graphene oxide as reinforcement in epoxy based nanocomposites[J]. Surfaces and Interfaces, 2018, 10: 100-109. doi: 10.1016/j.surfin.2017.12.004
    [51]
    VILA M, GARCÍA A, GIROTTI A, et al. 3D silicon doped hydroxyapatite scaffolds decorated with elastin-like recombinamers for bone regenerative medicine[J]. Acta Biomaterialia, 2016, 45: 349-356. doi: 10.1016/j.actbio.2016.09.016
    [52]
    HOU Y, WANG W, BARTOLO P. Investigation of polycaprolactone for bone tissue engineering scaffolds: In vitro degradation and biological studies[J]. Materials & Design, 2022, 216: 110582.
    [53]
    JIAO Z, LUO B, XIANG S, et al. 3D printing of HA/PCL composite tissue engineering scaffolds[J]. Advanced Industrial and Engineering Polymer Research, 2019, 2(4): 196-202. doi: 10.1016/j.aiepr.2019.09.003
    [54]
    JOHN J, DEVJANI D, ALI S, et al. Optimization of 3D printed polylactic acid structures with different infill patterns using Taguchi-grey relational analysis[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(1): 62-78. doi: 10.1016/j.aiepr.2022.06.002
    [55]
    ESHRAGHI S, DAS S. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering[J]. Acta Biomaterialia, 2012, 8(8): 3138-3143. doi: 10.1016/j.actbio.2012.04.022
    [56]
    OSTAFINSKA A, FORTELNÝ I, HODAN J, et al. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 229-241. doi: 10.1016/j.jmbbm.2017.01.015
    [57]
    OLEWNIK-KRUSZKOWSKA E, KASPERSKA P, KOTER I. Effect of poly(ε-caprolactone) as plasticizer on the properties of composites based on polylactide during hydrolytic degradation[J]. Reactive and Functional Polymers, 2016, 103: 99-107. doi: 10.1016/j.reactfunctpolym.2016.03.026
    [58]
    ÅKERLUND E, DIEZ-ESCUDERO A, GRZESZCZAK A, et al. The effect of PCL addition on 3D-printable PLA/HA composite filaments for the treatment of bone defects[J]. Polymers (Basel), 2022, 14(16): 3305. doi: 10.3390/polym14163305
    [59]
    ESPOSITO CORCIONE C, GERVASO F, SCALERA F, et al. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling[J]. Ceramics International, 2019, 45(2): 2803-2810.
    [60]
    JOSEPH B, NINAN N, VISALAKSHAN R M, et al. Insights into the biomechanical properties of plasma treated 3D printed PCL scaffolds decorated with gold nanoparticles[J]. Composites Science and Technology, 2021, 202: 108544. doi: 10.1016/j.compscitech.2020.108544
    [61]
    LIU C, YAO W, TIAN M, et al. Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis[J]. Biomaterials, 2018, 179: 83-95. doi: 10.1016/j.biomaterials.2018.06.037
    [62]
    WANG H, YANG J, LIU X, et al. A robust 3D superhydrophobic sponge for in situ continuous oil removing[J]. Journal of Materials Science, 2019, 54(2): 1255-1266. doi: 10.1007/s10853-018-2938-4
    [63]
    DOU Y, HUANG J, XIA X, et al. A hierarchical scaffold with a highly pore-interconnective 3D printed PLGA/n-HA framework and an extracellular matrix like gelatin network filler for bone regeneration[J]. Journal of Materials Chemistry B, 2021, 9(22): 4488-4501. doi: 10.1039/D1TB00662B
    [64]
    DAVIDENKO N, SCHUSTER C F, BAX D V, et al. Evaluation of cell binding to collagen and gelatin: A study of the effect of 2D and 3D architecture and surface chemistry[J]. Journal of Materials Science-Materials in Medicine, 2016, 27(10): 148. doi: 10.1007/s10856-016-5763-9
    [65]
    CHENG W X, LIU Y Z, MENG X B, et al. PLGA/β-TCP composite scaffold incorporating cucurbitacin B promotes bone regeneration by inducing angiogenesis[J]. Journal of Orthopaedic Translation, 2021, 31: 41-51. doi: 10.1016/j.jot.2021.10.002
    [66]
    LIN S, CUI L, CHEN G, et al. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model[J]. Biomaterials, 2019, 196: 109-121. doi: 10.1016/j.biomaterials.2018.04.004
    [67]
    ZHU W, LIANG S, WANG J, et al. Europium-phenolic network coated BaGdF5 nanocomposites for tri-modal computed tomography/magnetic resonance/luminescence imaging[J]. Journal of Materials Science: Materials in Medicine, 2017, 28(5): 74. doi: 10.1007/s10856-017-5888-5
    [68]
    HE J, ZHANG N, ZHANG J, et al. Migration critically meditates osteoblastic differentiation of bone mesenchymal stem cells through activating canonical Wnt signal pathway[J]. Colloids and Surfaces B: Biointerfaces, 2018, 171: 205-213. doi: 10.1016/j.colsurfb.2018.07.017
    [69]
    WANG W, WEI J, LEI D, et al. 3D printing of lithium osteogenic bioactive composite scaffold for enhanced bone regeneration[J]. Composites Part B: Engineering, 2023, 256: 110641. doi: 10.1016/j.compositesb.2023.110641
    [70]
    XU Z, LIN B, ZHAO C, et al. Lanthanum doped octacalcium phosphate/polylactic acid scaffold fabricated by 3D printing for bone tissue engineering[J]. Journal of Materials Science & Technology, 2022, 118: 229-242.
    [71]
    HUANG J, LIU W, LIANG Y, et al. Preparation and biocompatibility of diphasic magnetic nanocomposite scaffold[J]. Materials Science and Engineering: C, 2018, 87: 70-77. doi: 10.1016/j.msec.2018.02.003
    [72]
    PORTER R M, LIU F, PILAPIL C, et al. Osteogenic potential of reamer irrigator aspirator (RIA) aspirate collected from patients undergoing hip arthroplasty[J]. Journal of Orthopaedic Research, 2009, 27(1): 42-49. doi: 10.1002/jor.20715
    [73]
    LIU Z, CHU W, ZHANG L, et al. The effect of enhanced bone marrow in conjunction with 3D-printed PLA-HA in the repair of critical-sized bone defects in a rabbit model[J]. Annals of Translational Medicine, 2021, 9(14): 1134. doi: 10.21037/atm-20-8198
    [74]
    PADUANO F, MARRELLI M, ALOM N, et al. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration[J]. Journal of Biomaterials Science, Polymer Edition, 2017, 28(8): 730-748. doi: 10.1080/09205063.2017.1301770
    [75]
    GENDVILIENE I, SIMOLIUNAS E, ALKSNE M, et al. Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds[J]. European Cells and Materials, 2021, 41: 204-215. doi: 10.22203/eCM.v041a15
    [76]
    ZHANG D, WEI G, LI P, et al. Urine-derived stem cells: A novel and versatile progenitor source for cell-based therapy and regenerative medicine[J]. Genes & Diseases, 2014, 1(1): 8-17.
    [77]
    BODIN A, BHARADWAJ S, WU S, et al. Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion[J]. Biomaterials, 2010, 31(34): 8889-8901. doi: 10.1016/j.biomaterials.2010.07.108
    [78]
    LIAO H T, LEE M Y, TSAI W W, et al. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I[J]. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10(10): E337-E353. doi: 10.1002/term.1811
    [79]
    ZHENG C, ATTARILAR S, LI K, et al. 3D-printed HA15-loaded β-tricalcium phosphate/poly (lactic-co-glycolic acid) bone tissue scaffold promotes bone regeneration in rabbit radial defects[J]. International Journal of Bioprinting, 2021, 7(1): 317.
    [80]
    SONG M, ZHAO D, WEI S, et al. The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone[J]. Bioelectromagnetics, 2014, 35(7): 479-490. doi: 10.1002/bem.21867
    [81]
    TU C, CHEN J, HUANG C, et al. Effects of electromagnetic fields treatment on rat critical-sized calvarial defects with a 3D-printed composite scaffold[J]. Stem Cell Research and Therapy, 2020, 11(1): 433. doi: 10.1186/s13287-020-01954-7
    [82]
    ZHANG H, MAO X, ZHAO D, et al. Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: An in vivo bioreactor model[J]. Scientific Reports, 2017, 7(1): 15255. doi: 10.1038/s41598-017-14923-7
    [83]
    LIU Y, MÖLLER B, WILTFANG J, et al. Tissue engineering of a vascularized bone graft of critical size with an osteogenic and angiogenic factor-based in vivo bioreactor[J]. Tissue Engineering Part A, 2014, 20(23-24): 3189-3197. doi: 10.1089/ten.tea.2013.0653
    [84]
    MAIA-PINTO M O C, BROCHADO A C B, TEIXEIRA B N, et al. Biomimetic mineralization on 3D printed PLA scaffolds: On the response of human primary osteoblasts spheroids and in vivo implantation[J]. Polymers, 2021, 13(1): 74.
    [85]
    KWON D Y, PARK J H, JANG S H, et al. Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(2): 516-528. doi: 10.1002/term.2532
    [86]
    TCACENCU I, RODRIGUES N, ALHARBI N, et al. Osseointegration of porous apatite-wollastonite and poly(lactic acid) composite structures created using 3D printing techniques[J]. Materials Science and Engineering: C, 2018, 90: 1-7. doi: 10.1016/j.msec.2018.04.022
    [87]
    ZHANG H, MAO X, DU Z, et al. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model[J]. Science and Technology of Advanced Materials, 2016, 17(1): 136-148. doi: 10.1080/14686996.2016.1145532
    [88]
    WANG W, ZHANG B, LI M, et al. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering[J]. Composites Part B: Engineering, 2021, 224: 109192. doi: 10.1016/j.compositesb.2021.109192
    [89]
    WANG W, ZHANG B, ZHAO L, et al. Fabrication and properties of PLA/nano-HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application[J]. Nanotechnology Reviews, 2021, 10(1): 1359-1373. doi: 10.1515/ntrev-2021-0083
    [90]
    LIU Z, GE Y, ZHANG L, et al. The effect of induced membranes combined with enhanced bone marrow and 3D PLA-HA on repairing long bone defects in vivo[J]. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14(10): 1403-1414. doi: 10.1002/term.3106
    [91]
    CHEN X, GAO C, JIANG J, et al. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration[J]. Biomedical Materials, 2019, 14(6): 065003. doi: 10.1088/1748-605X/ab388d
    [92]
    FERREIRA M, RZHEPISHEVSKA O, GRENHO L, et al. Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms[J]. International Journal of Pharmaceutics, 2017, 532(1): 241-248. doi: 10.1016/j.ijpharm.2017.08.089
    [93]
    SILVA T, GRENHO L, BARROS J, et al. A minocycline-releasing PMMA system as a space maintainer for staged bone reconstructions-in vitro antibacterial, cytocompatibility and anti-inflammatory characterization[J]. Biomedical Materials, 2017, 12(3): 035009. doi: 10.1088/1748-605X/aa68b8
    [94]
    LI X, WANG Y, WANG Z, et al. Composite PLA/PEG/nHA/dexamethasone scaffold prepared by 3D printing for bone regeneration[J]. Macromolecular Bioscience, 2018, 18(6): e1800068. doi: 10.1002/mabi.201800068
    [95]
    WANG Y, YAN L, CHENG R, et al. Multifunctional HA/Cu nano-coatings on titanium using PPy coordination and doping via pulse electrochemical polymerization[J]. Biomaterials Science, 2018, 6(3): 575-585. doi: 10.1039/C7BM01104K
    [96]
    RÊGO D F, ELIAS S T, AMATO A A, et al. Anti-tumor effects of metformin on head and neck carcinoma cell lines: A systematic review[J]. Oncology Letters, 2017, 13(2): 554-566. doi: 10.3892/ol.2016.5526
    [97]
    TAN W, GAO C, FENG P, et al. Dual-functional scaffolds of poly(L-lactic acid)/nanohydroxyapatite encapsulated with metformin: Simultaneous enhancement of bone repair and bone tumor inhibition[J]. Materials Science and Engineering: C, 2021, 120: 111592. doi: 10.1016/j.msec.2020.111592
    [98]
    SHI M, XIA L, CHEN Z, et al. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent[J]. Biomaterials, 2017, 144: 176-187. doi: 10.1016/j.biomaterials.2017.08.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(8)

    Article Metrics

    Article views (391) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return