Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
DAI Xinhang, XU Chenghai, WANG Kunjie, et al. Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4386-4397. doi: 10.13801/j.cnki.fhclxb.20231206.002
Citation: DAI Xinhang, XU Chenghai, WANG Kunjie, et al. Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4386-4397. doi: 10.13801/j.cnki.fhclxb.20231206.002

Fast prediction of 2D C/SiC compression performance based on self-consistent clustering analysis

doi: 10.13801/j.cnki.fhclxb.20231206.002
  • Received Date: 2023-10-11
  • Accepted Date: 2023-11-29
  • Rev Recd Date: 2023-11-09
  • Available Online: 2023-12-07
  • Publish Date: 2024-08-01
  • In this paper, the self-consistent clustering analysis (SCA) method was used to investigate the progressive damage behavior of 2D C/SiC under uniaxial compression load. The SCA method clusters the grid elements by strain concentration tensor, which greatly reduces the degree of freedom of the model and improves the computational efficiency of the model without significantly reducing the computational accuracy. The whole method consists of two stages: Offline and online. In the offline stage, the k-means algorithm was used to decompose and cluster the high-fidelity composite unit cells and calculate the interaction tensor between different clusters, and finally the reduced-order model was generated. At the online stage, the mechanical response was obtained by solving the discrete Lippmann-Schwinger equations based on the reduced-order model. The SCA method was applied to predict the compressive strength of 2D C/SiC. When the total number of clusters is 64, compared with the experiment, the calculation accuracy of the compressive strength solution is reduced by 1% compared with the traditional finite element method, but the overall calculation efficiency is improved by 34 times. When the clustering time spent in the offline stage is not considered, that is, the meso-structure of the material is known in advance to solve its mechanical behavior, the time of one-time online calculation is only 6 s, and the calculation efficiency is 104 times higher than that of the traditional finite element method. It has broad application prospects in the fields of rapid design of structural performance and rapid prediction of structural state.

     

  • loading
  • [1]
    冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9): 4187-4195.

    FENG Zhihai, LI Junning, TIAN Yuelong, et al. Advances in advanced composites for aerospace[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4187-4195(in Chinese).
    [2]
    FAES J C, REZAEI A, VAN PAEPEGEM W, et al. Accuracy of 2D FE models for prediction of crack initiation in nested textile composites with inhomogeneous intra-yarn fiber volume fractions[J]. Composite Structures, 2016, 140: 11-20. doi: 10.1016/j.compstruct.2015.12.024
    [3]
    GUAN G, JIAO G, HUANG T. Experimental research on failure mechanism of a CVI-fabricated ceramic matrix composite under compression[J]. Key Engineering Materials, 2006, 326-328: 1841-1844. doi: 10.4028/www.scientific.net/KEM.326-328.1841
    [4]
    程相伟, 张大旭, 杜永龙, 等. 基于X射线CT原位试验的平纹SiCf/SiC压缩损伤演化机理[J]. 上海交通大学学报, 2020, 54(10): 1074-1083.

    CHENG Xiangwei, ZHANG Daxu, DU Yonglong, et al. Compression damage evolution mechanism of flat SiCf/SiC based on X-ray CT in-situ test[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1074-1083(in Chinese).
    [5]
    王奇志, 林慧星, 许赟泉. 二维编织陶瓷基复合材料偏轴拉伸力学性能预测[J]. 复合材料学报, 2018, 35(12): 3423-3432.

    WANG Qizhi, LIN Huixing, XU Yunquan. Prediction of off-axis tensile mechanical properties of two-dimensional braided ceramic matrix composites[J]. Acta MateriaeCompositae Sinica, 2018, 35(12): 3423-3432(in Chinese).
    [6]
    LIU G, ZHANG L, GUO L, et al. Multi-scale progressive failure simulation of 3D woven composites under uniaxial tension[J]. Composite Structures, 2019, 208: 233-243. doi: 10.1016/j.compstruct.2018.09.081
    [7]
    刘文台, 程坤, 周何乐子, 等. 针刺C/C复合材料面内拉伸强度预测[J]. 复合材料学报, 2023, 40(2): 1142-1153.

    LIU Wentai, CHENG Kun, ZHOU Helezi, et al. Prediction of in-plane tensile strength of needle-punched C/C composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1142-1153(in Chinese).
    [8]
    HE C, GAO J, LI H, et al. A data-driven self-consistent clustering analysis for the progressive damage behavior of 3D braided composites[J]. Composite Structures, 2020, 249: 112471. doi: 10.1016/j.compstruct.2020.112471
    [9]
    DVORAK G J, ZHANG J. Transformation field analysis of damage evolution in composite materials[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(11): 2517-2541. doi: 10.1016/S0022-5096(01)00066-7
    [10]
    MICHEL J C, SUQUET P. Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(48): 5477-5502.
    [11]
    DVORAK G J, BAHEI-EL-DIN Y A, WAFA A M. The modeling of inelastic composite materials with the transformation field analysis[J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2(3A): 571. doi: 10.1088/0965-0393/2/3A/011
    [12]
    LIU Z, BESSA M A, LIU W K. Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 319-341. doi: 10.1016/j.cma.2016.04.004
    [13]
    SCHNEIDER M. On the mathematical foundations of the self-consistent clustering analysis for non-linear materials at small strains[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 783-801. doi: 10.1016/j.cma.2019.06.003
    [14]
    MOJUMDER S, GAO J, LIU W K. Self-consistent clustering analysis for modeling of theromelastic heterogeneous materials[J]. AIP Conference Proceedings, 2021, 2324(1): 030029.
    [15]
    BAI X, BESSA M A, MELRO A R, et al. High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites[J]. Composite Structures, 2015, 134: 132-141. doi: 10.1016/j.compstruct.2015.08.047
    [16]
    MACQUEEN J. Some methods for classification and analysis of multivariate observations [C] //Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability. California: University of California Press, 1967: 281-297.
    [17]
    韩新星. 基于聚类分析的编织复合材料多尺度计算方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    HAN Xinxing. Study on multi-scale calculation method of braided composites based on cluster analysis[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [18]
    LIU Z, KAFKA O L, YU C, et al. Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity[M]//Advances in Computational Plasticity. Cham: Springer, 2018: 221-242.
    [19]
    HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
    [20]
    LAPCZYK I, HURTADO J A. Progressive damage modeling in fiber-reinforced materials[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(11): 2333-2341. doi: 10.1016/j.compositesa.2007.01.017
    [21]
    徐凯. 2D C/C复合材料的力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    XU Kai. Study on the mechanical properties of 2D C/C composites[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [22]
    ZHOU L, CHEN M, LIU C, et al. A multi-scale stochastic fracture model for characterizing the tensile behavior of 2D woven composites[J]. Composite Structures, 2018, 204: 536-547. doi: 10.1016/j.compstruct.2018.07.128
    [23]
    RAMAKRISHNAN N R, ARUNACHALAM V S. Effective elastic moduli of porous ceramic materials[J]. Journal of the American Ceramic Society, 1993, 76: 2745-2752. doi: 10.1111/j.1151-2916.1993.tb04011.x
    [24]
    梁仕飞, 矫桂琼. 2.5维自愈合C/SiC复合材料弹性性能预测[J]. 固体力学学报, 2013, 34(2): 181-187. doi: 10.19636/j.cnki.cjsm42-1250/o3.2013.02.010

    LIANG Shifei, YOU Guiqiong. Prediction of elastic properties of 2.5D self-healing C/SiC composites[J]. Chinese Journal of Solid Mechanics, 2013, 34(2): 181-187(in Chinese). doi: 10.19636/j.cnki.cjsm42-1250/o3.2013.02.010
    [25]
    董士博. 碳/碳化硅复合材料的高温力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    DONG Shibo. Research on high temperature mechanical properties of carbon/silicon carbide composites[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
    [26]
    WANG L, WU J, CHEN C, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale[J]. Composite Structures, 2017, 178: 395-405. doi: 10.1016/j.compstruct.2017.07.023
    [27]
    BUDIANSKY B, FLECK N A. Compressive failure of fibre composites[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(1): 183-211. doi: 10.1016/0022-5096(93)90068-Q
    [28]
    FANG G, JUN L, YU W, et al. The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 343-350. doi: 10.1016/j.compositesa.2008.12.007
    [29]
    American Society of Testing Materials. Standard test method for monotonic compressive strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at ambient temperatures: ASTM C1358—2018[S]. West Conshohocken: ASTM International, 2018.
    [30]
    中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for compression performance of fiber reinforced plastics: GB/T 1448—2005[S]. Beijing: China Standard Press, 2005(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (268) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return