Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
SONG Yan, LIN Ken, ZHOU Yutong, et al. Synergistic flame retardant effect of lignin containing silicon-nitrogen with ammonium polyphosphate on polylactic acid[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3544-3556. doi: 10.13801/j.cnki.fhclxb.20231205.003
Citation: SONG Yan, LIN Ken, ZHOU Yutong, et al. Synergistic flame retardant effect of lignin containing silicon-nitrogen with ammonium polyphosphate on polylactic acid[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3544-3556. doi: 10.13801/j.cnki.fhclxb.20231205.003

Synergistic flame retardant effect of lignin containing silicon-nitrogen with ammonium polyphosphate on polylactic acid

doi: 10.13801/j.cnki.fhclxb.20231205.003
Funds:  National Natural Science Foundation of China (51473024); Industry-Academic Joint Innovative Fund of Jiangsu Province (BY2019080)
  • Received Date: 2023-09-21
  • Accepted Date: 2023-11-24
  • Rev Recd Date: 2023-11-22
  • Available Online: 2023-12-06
  • Publish Date: 2024-07-01
  • Polylactic acid (PLA) as a biobased degradable plastic has increasingly become a research hotspot. However, PLA's application in packaging and electrical appliances is limited due to its high combustibility. In order to solve the above problem, lignin containing silicon-nitrogen synergistic (Si-NLig) was synthesized by modification of alkali lignin (Lig), and its TGA results showed that the temperature corresponding to mass loss 5wt% of material (T5%) increased by 20℃ and the high temperature residue increased from 2.3% to 25.5% in air. And Si-NLig was used as a charring agent, and compounded with ammonium polyphosphate (APP) to prepared flame retardant polylactic acid (Si-NLig-APP/PLA) by melt blending and hot-press molding, and the PLAs' flame retardant properties, mechanical properties, and combustion behavior, were investigated. The results showed that addition of 10wt% Si-NLig-APP with the mass ratio 1∶4 made Si-NLig-8%APP/PLA reach the limiting oxygen index (LOI) value of 27% and the vertical burning UL-94 V-0 level, while the LOI value of Lig-8%APP/PLA with Lig as charring agent at the same condition was 26% and the vertical burning UL-94 only passed V-2 rating. Meanwhile, the peak heat release rate (PHRR) reduced by 27% compared to Lig-8%APP/PLA. Raman spectroscopy was used to characterize the structure of the residual char after cone calorimeter testing, it was found that the degree of graphitization of Si-NLig-8%APP/PLA increased by 36.7% compared to that of Lig-8%APP/PLA, which provides a theoretical basis for its good flame retardancy. Introduction of Si-NLig led to the enhancement of mechanical properties of the flame retardant PLA with tensile strength increasing by 21%. It can be seen that Si-NLig has potential application prospect in the field of halogen-free flame retardant PLA.

     

  • loading
  • [1]
    DENG S, BAI H Z, LIU Z W, et al. Toward supertough and heat-resistant stereocomplex-type polylactide/elastomer blends with impressive melt stability via in situ formation of graft copolymer during one-pot reactive melt blending[J]. Macromolecules, 2019, 52(4): 1718-1730. doi: 10.1021/acs.macromol.8b02626
    [2]
    SHI W Y, CHEN Z Z. Mechanical, rheological, and crystallinity properties of polylactic acid/polyethylene glycol-polydimethylsiloxane copolymer blends by melt blending[J]. Journal of Applied Polymer Science, 2022, 140(4): 1-11.
    [3]
    MAKOVICKA L O, KATARINA K, HUA S L, et al. Ignition and burning of selected tree species from tropical and northern temperate zones[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(2): 195-202.
    [4]
    于文灏. 聚乳酸/含磷阻燃剂共混物的制备及性能研究[D]. 无锡: 江南大学, 2022.

    YU Wenhao. Preparation and properties of polylactic acid/phosphorus containing flame retardant blends[D]. Wuxi: Jiangnan University, 2022(in Chinese).
    [5]
    YANG W J, ZHOU Q K, PAN W H, et al. Synthesis of vanillin-based porphyrin for remarkably enhancing the toughness, UV-resistance and self-extinguishing properties of polylactic acid[J]. Chemical Engineering Journal, 2023, 469: 143935. doi: 10.1016/j.cej.2023.143935
    [6]
    王自博, 吕锦翔, 肖丹. 基于生物材料阻燃PLA研究进展[J]. 塑料科技, 2022, 50(7): 96-100. doi: 10.15925/j.cnki.issn1005-3360.2022.07.020

    WANG Zibo, LYU Jinxiang, XIAO Dan. Research progress in flame retardant PLA based on biomaterials[J]. Plastics Science and Technology, 2022, 50(7): 96-100(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2022.07.020
    [7]
    ZHANG D H, PEI M, WEI K, et al. Flame retardant properties and mechanism of polylactic acid-conjugated flame retardant composites[J]. Frontiers in Chemistry, 2022, 10: 894112. doi: 10.3389/fchem.2022.894112
    [8]
    WANG C, WU Y C, LI Y C, et al. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant[J]. Polymers for Advanced Technologies, 2018, 29(1): 668-676. doi: 10.1002/pat.4105
    [9]
    ORTA O R, WESSEELINK A K, BETHEA T N, et al. Brominated flame retardants and organochlorine pesticides and incidence of uterine leiomyomata: A prospective ultrasound study[J]. Environmental Epidemiology, 2021, 5(1): e127. doi: 10.1097/EE9.0000000000000127
    [10]
    贝钰, 翁述贤, 贾普友, 等. 木质素基阻燃剂的研究进展[J]. 生物质化学工程, 2023, 57(2): 71-78.

    BEI Jue, WENG Shuxian, JIA Puyou, et al. Research progress of lignin based flame retardants[J]. Biomass Chemical Engineering, 2023, 57(2): 71-78(in Chinese).
    [11]
    ZHAN Y Y, WU X J, WANG S S, et al. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid[J]. Polymer Degradation and Stability, 2021, 191: 109684. doi: 10.1016/j.polymdegradstab.2021.109684
    [12]
    靳昕怡, 窦娟, 魏丽菲, 等. 无卤阻燃剂在聚合物阻燃中的应用研究进展[J]. 高科技纤维与应用, 2022, 47(6): 67-73. doi: 10.3969/j.issn.1007-9815.2022.06.011

    JIN Xinyi, DOU Juan, WEI Lifei, et al. Research on the application of halogen-free flame retardant in polymer flame retardants[J]. Hi-Tech Fiber and Application, 2022, 47(6): 67-73(in Chinese). doi: 10.3969/j.issn.1007-9815.2022.06.011
    [13]
    王菁, 陈蕾, 李圣军, 等. 添加型阻燃剂的研究进展与发展趋势[J]. 合成纤维工业, 2022, 45(5): 69-74. doi: 10.3969/j.issn.1001-0041.2022.05.013

    WANG Jing, CHEN Lei, LI Shengjun, et al. Research progress and development trend of additive flame retardants[J]. China Synthetic Fiber Indutry, 2022, 45(5): 69-74(in Chinese). doi: 10.3969/j.issn.1001-0041.2022.05.013
    [14]
    FEDERICO U, CARLO B, MARTINA R, et al. Synthesis of sustainable flame retarded polypropylene by using waste material[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(2): 165-171.
    [15]
    王丽琼, 李立影, 梁洁, 等. 三嗪和磷腈阻燃剂作碳源阻燃聚乳酸复合材料的性能研究[J]. 安全与环境学报, 2021, 21(3): 1040-1047. doi: 10.13637/j.issn.1009-6094.2019.1640

    WANG Liqiong, LI Liying, LIANG Jie, et al. Effect to be gained by using the triazine and phosphazene flame retardants as carbon sources on the properties of polylactic acid[J]. Journal of Safety and Environment, 2021, 21(3): 1040-1047(in Chinese). doi: 10.13637/j.issn.1009-6094.2019.1640
    [16]
    YAO Z Y, QIAN L J, QIU Y, et al. Flame retardant and toughening behaviors of bio-based DOPO-containing curing agent in epoxy thermoset[J]. Polymers for Advanced Technologies, 2020, 31(3): 461-471. doi: 10.1002/pat.4782
    [17]
    MA D, LI J. Synthesis of a bio-based triazine derivative and its effects on flame retardancy of polypropylene composites[J]. Journal of Applied Polymer Science, 2020, 137(1): 245-253.
    [18]
    白毓黎, 白富栋, 张通, 等. 木质素基阻燃剂制备的研究进展[J]. 当代化工, 2020, 49(10): 2314-2317. doi: 10.3969/j.issn.1671-0460.2020.10.049

    BAI Yuli, BAI Fudong, ZHANG Tong, et al. Research progress of lignin-based flame retardant[J]. Contemporary Chemical Industry, 2020, 49(10): 2314-2317(in Chinese). doi: 10.3969/j.issn.1671-0460.2020.10.049
    [19]
    XIA Y R, CAI W H, LIU Y H, et al. Facile fabrication of starch-based, synergistic intumescent and halogen-free flame retardant strategy with expandable graphite in enhancing the fire safety of polypropylene[J]. Industrial Crops & Products, 2022, 184: 115002.
    [20]
    ZHANG L Y, XUE W, GU L M. Study on properties and application of pyrophosphate flame retardant microcapsules prepared from hemicellulose maleate[J]. Cellulose, 2020, 27(7): 3931-3946. doi: 10.1007/s10570-020-03045-5
    [21]
    WANG M T, YIN G Z, YANG Y, et al. Bio-based flame retardants to polymers: A review[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(2): 132-155. doi: 10.1016/j.aiepr.2022.07.003
    [22]
    CARVALHO R M, SILVA D P S R, VEIGA S R N, et al. The influence of montmorillonite on the flame-retarding properties of intumescent bio-based PLA composites[J]. Journal of Applied Polymer Science, 2022, 139(22): 52243. doi: 10.1002/app.52243
    [23]
    YANG H T, YU B, XU X D, et al. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials[J]. Green Chemistry, 2020, 22: 2129-2161. doi: 10.1039/D0GC00449A
    [24]
    ZHANG R, XIAO X F, TAI Q L. Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid)[J]. Polymer Engineering and Science, 2012, 52(12): 2620-2626. doi: 10.1002/pen.23214
    [25]
    中国国家标准化管理委员会. 塑料 用氧指数法测定燃烧行为: GB/T 2406—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics determination of combustion behavior using the oxygen index method: GB/T 2406—2008[S]. Beijing: China Standards Press, 2008(in Chines).
    [26]
    中国国家标准化管理委员会. 塑料 燃烧性能的测定 水平法和垂直法: GB/T 2408—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People's Republic of China. Determination of burning properties of plastics-horizontal and vertical methods: GB/T 2408—2021[S]. Beijing: China Standards Press, 2021(in Chinese).
    [27]
    ISO. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660-1: 2015[S]. Geneva: ISO, 2015.
    [28]
    中国国家标准化管理委员会. 塑料拉伸性能的测定第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics-determination of tensile properties-Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [29]
    中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics-determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [30]
    杨晓涵, 宋艳, 林肯, 等. 木质素基成炭剂的制备及在膨胀阻燃聚丙烯的应用[J]. 高分子材料科学与工程, 2022, 38(12): 39-46. doi: 10.16865/j.cnki.1000-7555.2022.0270

    YANG Xiaohan, SONG Yan, LIN Ken, et al. Preparation of lignin-based char-forming agent and its application in intumescent flame retardant polypropylene[J]. Polymer Materials Science and Engineering, 2022, 38(12): 39-46(in Chinese). doi: 10.16865/j.cnki.1000-7555.2022.0270
    [31]
    OTT M W, DIETZ C, TROSIEN S, et al. Co-curing of epoxy resins with aminated lignins: Insights into the role of lignin homo crosslinking during lignin amination on the elastic properties[J]. Holzforschung, 2021, 75(4): 390-398. doi: 10.1515/hf-2020-0060
    [32]
    YANG H C, PU H T, GONG F H. Preparation of poly(methyl methacrylate)-grafted attapulgite by surface-initiated radical polymerization[J]. Journal of Applied Polymer Science, 2014, 131(22): 1725-1730.
    [33]
    SONG Y, LI J C, YAN N, et al. Preparation of γ-divinyl-3-aminopropyltriethoxysilane modified lignin and its application in flame retardant poly(lactic acid)[J]. Materials, 2018, 11(9): 1505. doi: 10.3390/ma11091505
    [34]
    吴迪超, 陈超, 侯兴隆, 等. 热解温度对纤维素和木质素成炭结构的影响[J]. 生物质化学工程, 2021, 55(3): 1-9. doi: 10.3969/j.issn.1673-5854.2021.03.001

    WU Dichao, CHEN Chao, HOU Xinglong, et al. Effect of pyrolysis temperature on structures of chars forming from cellulose and lignin[J]. Biomass Chemical Engineering, 2021, 55(3): 1-9(in Chinese). doi: 10.3969/j.issn.1673-5854.2021.03.001
    [35]
    HU X, SUN J H, LI X, et al. Effect of phosphorus-nitrogen compound on flame retardancy and mechanical properties of polylactic acid[J]. Journal of Applied Polymer Science, 2021, 138(7): 49829. doi: 10.1002/app.49829
    [36]
    王楠, 宋艳, 李锦春, 等. 含磷木质素基成炭剂的合成及在阻燃聚丙烯中的应用[J]. 高分子材料科学与工程, 2018, 34(4): 7-13.

    WANG Nan, SONG Yan, LI Jinchun, et al. Synthesis of lignin-based charring agent containing phosphorus and its application in flame retardant polypropylene[J]. Polymer Materials Science and Engineering, 2018, 34(4): 7-13(in Chinese)
    [37]
    JIA L J, HUANG W Z, ZHAO Y J, et al. Ultra-light polylactic acid/combination composite foam: A fully biodegradable flame retardant material[J]. International Journal of Biological Macromolecules, 2022, 220: 754-765. doi: 10.1016/j.ijbiomac.2022.08.093
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(9)

    Article Metrics

    Article views (260) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return