Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
ZHANG Xinting, YIN Hongfeng, WEI Ying, et al. Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3577-3586. doi: 10.13801/j.cnki.fhclxb.20231128.001
Citation: ZHANG Xinting, YIN Hongfeng, WEI Ying, et al. Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3577-3586. doi: 10.13801/j.cnki.fhclxb.20231128.001

Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites

doi: 10.13801/j.cnki.fhclxb.20231128.001
  • Received Date: 2023-09-08
  • Accepted Date: 2023-11-26
  • Rev Recd Date: 2023-10-18
  • Available Online: 2023-12-28
  • Publish Date: 2024-07-01
  • One of the important ways to improve the mechanical properties of continuous glass fiber reinforced nylon 6 composites (cGF/PA6) is to improve the interface interactions between glass fiber and nylon 6. In this study, star-branched polyamide 6 (SPA6) was applied to cGF/PA6 composite system, and continuous glass fiber reinforced nylon composites with different contents of SPA6 (cGF/PA6-SPA6) were prepared by melt extrusion combined with hot pressing. The characterization of contact angle indicates that the polarity between SPA6 and cGF is more similar. DSC results show that there is not much difference in the melting temperature among PA6, SPA6 and PA6-SPA6 composite matrix, and both the crystallization temperature and crystallinity of PA6-SPA6 are increased. The flexural strength of PA6-SPA6 matrix is lower than that of PA6 and SPA6 measured by three-point flexural tests. However, compared with cGF/PA6, the flexural strength of cGF/5wt%SPA6 and cGF/10wt%SPA6 composites increased by 4.9% and 6.4%, respectively, and the shearing strength of cGF/5wt%SPA6 and cGF/10wt%SPA6 composites increased by 16.7% and 15.6%, respectively. The impact strength of cGF/PA6 and cGF/SPA6 composites is 12 times and 26.3 times that of PA6 and SPA6, respectively. Combined with the observation of impact fracture morphology, it can be inferred that adding 5wt% or 10wt% SPA6 to cGF/PA6 composites can improve the flexural and shearing strength of the composites, while having little influence on the impact strength, and considering its cost-effectiveness, it proves to be of practical value for applications.

     

  • loading
  • [1]
    ZHENG J, SIEGEL R W, TONEY C G. Polymer crystalline structure and morphology changes in nylon-6/ZnO nanocomposites[J]. Journal of Polymer Science, 2003, 41(10): 1033-1050. doi: 10.1002/polb.10452
    [2]
    STEFAN N, STEFAN E, CHRISTIAN B, et al. Polymerization of ε-caprolactam by latent precatalysts based on protected n-heterocyclic carbenes[J]. ACS Macro Letters, 2013, 2(7): 609-612. doi: 10.1021/mz400199y
    [3]
    ZHANG C, TJIU W W, LIU T, et al. Dramatically enhanced mechanical performance of nylon-6 magnetic composites with nanostructured hybrid one-dimensional carbon nanotube two-dimensional clay nanoplatelet heterostructures[J]. Journal of Physical Chemistry B, 2011, 115(13): 3392-3399. doi: 10.1021/jp112284k
    [4]
    TUNA B, BENKREIRA H. Reactive extrusion of polyamide 6 using a novel chain extender[J]. Polymer Engineering and Science, 2019, 59(s2): E25-E31. doi: 10.1002/pen.24944
    [5]
    WANG Y, HOU D F, KE K, et al. Chemical-resistant polyamide 6/polyketone composites with gradient encapsulation structure: An insight into the formation mechanism[J]. Polymer, 2021, 212(1): 123173.
    [6]
    ZHANG T, KANG H J. Enhancement of the processability and properties of nylon 6 by blending with polyketone[J]. Polymers, 2021, 13(19): 3403-3418. doi: 10.3390/polym13193403
    [7]
    TUNA B, BENKREIRA H. Chain extension of recycled PA6[J]. Polymer Engineering and Science, 2017, 58(7): 1037-1042.
    [8]
    PRASHANTH S, SUBBAYA K M, NITHIN K, et al. Fiber reinforced composites—A review[J]. Journal of Material Science & Engineering, 2017, 6(3): 1000341.
    [9]
    DRYZEK E, WRÓBEL M, JUSZYŃSKA-GAŁĄZKA E. Free-volume and tensile properties of glass fibre reinforced polyamide 6 composites[J]. Acta Physica Polonica A, 2017, 132(5): 1501-1505. doi: 10.12693/APhysPolA.132.1501
    [10]
    LI X, WANG X, YANG L, et al. Synergistic effect of polyfunctional silane coupling agent and styrene acrylonitrile copolymer on the water-resistant and mechanical performances of glass fiber-reinforced polyamide 6[J]. Polymers for Advanced Technologies, 2019, 30(8): 1951-1958. doi: 10.1002/pat.4627
    [11]
    YÁÑEZ-MACÍAS R, RIVERA-SALINAS J E, SOLÍS-ROSALES S, et al. Mechanical behavior of glass fiber-reinforced nylon-6 syntactic foams and its Young's modulus numerical study[J]. Journal of Applied Polymer Science, 2021, 138(27): 50648. doi: 10.1002/app.50648
    [12]
    CHEN K, JIA M, SUN H, et al. Thermoplastic reaction injection pultrusion for continuous glass fiber-reinforced polyamide-6 composites[J]. Materials, 2019, 12(3): 463. doi: 10.3390/ma12030463
    [13]
    CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing, 2018, 68: 415-423. doi: 10.1016/j.polymertesting.2018.04.038
    [14]
    LUKE S S, SOARES D, MARSHALL J V, et al. Effect of fiber content and fiber orientation on mechanical behavior of fused filament fabricated continuous-glass-fiber-reinforced nylon[J]. Rapid Prototyping Journal, 2021, 27(7): 1346-1354. doi: 10.1108/RPJ-01-2021-0003
    [15]
    WANG C, ZHANG Y, YI Y, et al. Thermal, morphological and mechanical properties of glass fiber reinforced star-branched polyamide 6[J]. Polymer Composites, 2022, 43(3): 1617-1625. doi: 10.1002/pc.26482
    [16]
    NÚÑEZ CARRERO K C, HERRERO M, ASENSIO M, et al. Star-branched polyamides as the matrix in thermoplastic composites[J]. Polymers, 2022, 14(5): 942. doi: 10.3390/polym14050942
    [17]
    REN J M, MCKENZIE T G, FU Q, et al. Star polymers[J]. Chemical Reviews, 2016, 116(12): 6743-6836. doi: 10.1021/acs.chemrev.6b00008
    [18]
    WAN J, LI C, FAN H, et al. Elucidating isothermal crystallization behaviors of nylon-11s. Influence of star-chain branching[J]. Thermochimica Acta, 2012, 544: 99-104. doi: 10.1016/j.tca.2012.06.023
    [19]
    MARTINO L, BASILISSI L, FARINA H, et al. Bio-based polyamide 11: Synthesis, rheology and solid-state properties of star structures[J]. European Polymer Journal, 2014, 59: 69-77. doi: 10.1016/j.eurpolymj.2014.07.012
    [20]
    STEEMAN P, NIJENHUIS A. The effect of random branching on the balance between flow and mechanical properties of polyamide-6[J]. Polymer, 2010, 51(12): 2700-2707. doi: 10.1016/j.polymer.2010.04.017
    [21]
    FU P, WANG M, LIU M, et al. Preparation and characterization of star-shaped nylon 6 with high flowability[J]. Journal of Polymer Research, 2010, 18(4): 651-657.
    [22]
    SCHAEFGEN J R, FLORY P J. Synthesis of multichain polymers and investigation of their viscosities1[J]. Journal of the American Chemical Society, 1948, 70(8): 2709-2718. doi: 10.1021/ja01188a026
    [23]
    ZHU N, GONG H, HAN W, et al. Synthesis and characterization of star-branched polyamide 6 via anionic ring-opening polymerization with N, N', N''-trimesoyltricaprolactam as a multifunctional activator[J]. Chinese Chemical Letters, 2015, 26(11): 1389-1392. doi: 10.1016/j.cclet.2015.06.005
    [24]
    WANG C, HU F, YANG K, et al. Synthesis and properties of star-branched nylon 6 with hexafunctional cyclotriphosphazene core[J]. RSC Advances, 2015, 5(107): 88382-88391. doi: 10.1039/C5RA15598C
    [25]
    American Society for Testing and Material. Standard test method for flexural properties of polymer matrix composite material: ASTM D7264—07[S]. West Conshohocken: ASTM International, 2007 .
    [26]
    American Society for Testing and Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344—16[S]. West Conshohocken: ASTM International, 2016.
    [27]
    American Society for Testing and Materials. Standard test methods for determining the lzod pendulum impact resistance of plastics: ASTM D256—10[S]. West Conshohocken: ASTM International, 2010.
    [28]
    中国国家标准化管理委员会. 热塑性塑料熔体质量流动速率和熔体体积流动速率的测定: GB/T 3682—2000[S]. 北京: 中国标准出版社, 2000.

    Standardization Administration of the People's Republic of China. Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics: GB/T 3682—2000[S]. Beijing: Standards Press of China, 2000(in Chinese).
    [29]
    中国国家标准化管理委员会. 纤维级聚己内酰胺(PA6)切片试验方法: GB/T 38138—2019[S]. 北京: 中国标准出版社, 2019.

    Standardization Administration of the People's Republic of China. Test methods of fiber grade polycaprolactam (PA6) chip: GB/T 38138—2019[S]. Beijing: Standards Press of China, 2019(in Chinese).
    [30]
    CANTIN S, BOUTEAU M, BENHABIB F, et al. Surface free energy evaluation of well-ordered Langmuir-Blodgett surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276(1-3): 107-115.
    [31]
    YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
    [32]
    杨浩邈, 黄鹏, 吴鹏, 等. 玻璃纤维表面能及其与不同树脂体系的润湿特性[J]. 机械工程材料, 2014, 38(10): 50-53.

    YANG Haomiao, HUANG Peng, WU Peng, et al. Surface energy of glass fiber and its wetting properties with different resin systems[J]. Materials For Machanical Engineering, 2014, 38(10): 50-53(in Chinese).
    [33]
    ZISMAN W A. Relation of the equilibrium contact angle to liquid and solid constitution[J]. Advances in Chemistry, 1964, 43(1): 1-51.
    [34]
    张永, 周华龙, 王丰, 等. 尼龙66与尼龙6及其共混物的熔融与结晶行为[J]. 工程塑料应用, 2015, 43(6): 86-89. doi: 10.3969/j.issn.1001-3539.2015.06.020

    ZHANG Yong, ZHOU Hualong, WANG Feng, et al. Melting and crystallization behavior of nylon 66 and nylon 6 and their blends[J]. Engineering Plastics Application, 2015, 43(6): 86-89(in Chinese). doi: 10.3969/j.issn.1001-3539.2015.06.020
    [35]
    李向阳, 张鸿宇, 王晨, 等. 成核剂对尼龙6结晶与性能的影响[J]. 塑料, 2020, 49(6): 13-15.

    LI Xiangyang, ZHANG Hongyu, WANG Chen, et al. Effect of nucleating agent on crystallization and properties of nylon 6[J]. Plastics, 2020, 49(6): 13-15(in Chinese).
    [36]
    XIE W, JIANG N, GAN Z. Effects of multi-arm structure on crystallization and biodegradation of star-shaped poly(ε-caprolactone)[J]. Macromolecular Bioscience, 2008, 8(8): 775-784. doi: 10.1002/mabi.200800011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (361) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return