Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
LI Tong, QIAN Zhen, CHEN Zixuan, et al. Mechanical properties and failure prediction of three-dimensional orthogonal fiber reinforced nanoporous resin composites[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4039-4057. doi: 10.13801/j.cnki.fhclxb.20231117.002
Citation: LI Tong, QIAN Zhen, CHEN Zixuan, et al. Mechanical properties and failure prediction of three-dimensional orthogonal fiber reinforced nanoporous resin composites[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4039-4057. doi: 10.13801/j.cnki.fhclxb.20231117.002

Mechanical properties and failure prediction of three-dimensional orthogonal fiber reinforced nanoporous resin composites

doi: 10.13801/j.cnki.fhclxb.20231117.002
Funds:  National Natural Science Foundation of China (22078100; 52102098)
  • Received Date: 2023-10-18
  • Accepted Date: 2023-11-10
  • Rev Recd Date: 2023-11-06
  • Available Online: 2023-11-20
  • Publish Date: 2024-08-01
  • To meet the extreme thermal protection and load-bearing requirement of aerospace vehicle, three-dimensional orthogonal fiber reinforced nanoporous resin composites (3DIPC) have been prepared using three-dimensional quartz fiber preform as reinforcement and high-strength nanoporous phenolic resin as matrix. The as-prepared 3DIPC exhibit a mid-density of ~1.46 g·cm−3, low room-temperature thermal conductivity (<0.30 W·(m·K)−1), low linear ablation rate (~0.15 mm·s−1) and excellent mechanical properties with tensile strength >400 MPa, compressive strength >390 MPa, bending strength >300 MPa and interlaminar shear strength >30 MPa. By adjusting the yarn fineness in different directions, the effects of meso-structure variations in fiber preforms on the mechanical properties of 3DIPC were systematically studied. The results show increasing the fineness of the Z yarn can enhance the compressive modulus and interlaminar shear strength of composite materials, but it leads to a deterioration of tensile properties and compressive strength. Increasing the fineness of the warp yarn can improve the tensile and bending properties in the warp direction, but the tensile and flexural properties in the weft direction will be reduced. Finally, a mesoscale finite element model incorporating both surface and internal structures was established based on the actual morphology of 3DIPC. Combining with the progressive damage model of the composite material, the tensile failure behavior of the 3DIPC was simulated using the finite element software ABAQUS. The results show that the damage in 3DIPC initiates at the matrix of yarns and propagates to pure matrix and the fibers of yarns as the strain increases. The failure of 3DIPC under tensile loading in the warp and weft direction is dominated by the fracture of fibers of warp and weft yarns, respectively. Furthermore, the fracture of fibers of surface-Z yarns and surface-weft yarns is the primary cause of early-stage damage in 3DIPC under tensile loading in the weft direction.

     

  • loading
  • [1]
    杜晨慧. 高超声速飞行器综合热管理及关键技术研究进展[J]. 装备环境工程, 2023, 20(1): 43-51.

    DU Chenhui. Research progress on integrated thermal management and key technology of hypersonic vehicles[J]. Equipment Environmental Engineering, 2023, 20(1): 43-51(in Chinese).
    [2]
    蒋凌澜, 陈阳. 树脂基复合材料在航天飞行器气动热防护上的应用研究[J]. 玻璃钢/复合材料, 2014(7): 78-84.

    JIANG Linglan, CHEN Yang. The application research of resin-based composites for aero-dynamic thermal protection system[J]. Fiber Reinforced Plastics/Composites, 2014(7): 78-84(in Chinese).
    [3]
    欧俊, 黄民忠, 黄瑶, 等. 基于DLP技术打印制备聚合物转化陶瓷基复合材料的研究[J]. 陶瓷学报, 2023, 44(1): 154-162.

    OU Jun, HUANG Minzhong, HUANG Yao, et al. Digital light processing-based fabrication of polymer-derived ceramic matrix composites[J]. Journal of Ceramics, 2023, 44(1): 154-162(in Chinese).
    [4]
    ELLERBY D, VENKATAPATHY E, GAGE P, et al. Heatshield for extreme entry environment technology (HEEET) thermal protection system (TPS)[C]//Materials Science & Technology Conference and Exhibition. Portland: Ames Research Center, 2019: 1359-1366.
    [5]
    SALEH M N, SOUTIS C. Recent advancements in mechanical characterisation of 3D woven composites[J]. Mechanics of Advanced Materials and Modern Processes, 2017, 3(1): 1-17. doi: 10.1186/s40759-016-0016-7
    [6]
    李涛涛. 碳/芳纶混杂正交三向复合材料拉伸疲劳性能实验研究[D]. 天津: 天津工业大学, 2016.

    LI Taotao. Experimental study on the tensile fatigue performance of carbon/aramid hybrid orthotropic three-way composites[D]. Tianjin: Tianjin University of Technology, 2016(in Chinese).
    [7]
    FAN W, YUAN L, D'SOUZA N, et al. Enhanced mechanical and radar absorbing properties of carbon/glass fiber hybrid composites with unique 3D orthogonal structure[J]. Polymer Testing, 2018, 69: 71-79. doi: 10.1016/j.polymertesting.2018.05.007
    [8]
    YANG X, SUN Y, LI D, et al. Evaluation of multi-directional compression behaviors and failure of three-dimensional orthogonal woven composites via liquid nitrogen temperature[J]. Composites Communications, 2023, 40: 101626.
    [9]
    邓奇林, 杨敏, 姚彧敏, 等. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5): 139-146.

    DENG Qilin, YANG Min, YAO Yumin, et al. Effect of three-directional orthogonal preform weaving parameters on properties of C/C composites[J]. Journal of Materials Engineering, 2022, 50(5): 139-146(in Chinese).
    [10]
    钱逸星, 杨振宇, 卢子兴. 纺织复合材料力学性能数值模拟方法研究进展[J]. 航空制造技术, 2022, 65(16): 135-151.

    QIAN Yixing, YANG Zhenyu, LU Zixing. Research progress on numerical simulation of mechanical properties of textile composites[J]. Aeronautical Manufacturing Technology, 2022, 65(16): 135-151(in Chinese).
    [11]
    ZHENG T, GUO L, BENEDICTUS R, et al. Micromechanics-based multiscale progressive failure simulation of 3D woven composites under compressive loading with minimal material parameters[J]. Composites Science and Technology, 2022, 219: 109227. doi: 10.1016/j.compscitech.2021.109227
    [12]
    YANG X, AI J, ZHU H, et al. Multi-directional compression behaviors and failure mechanisms of 3D orthogonal woven composites: Parametric modeling and strength prediction[J]. Materials & Design, 2022, 222: 111108.
    [13]
    JIA X, XIA Z, GU B. Micro/meso-scale damage analysis of three-dimensional orthogonal woven composites based on sub-repeating unit cells[J]. The Journal of Strain Analysis for Engineering Design, 2012, 47(5): 313-328. doi: 10.1177/0309324712444671
    [14]
    国防科学技术工业委员会. 烧蚀材料烧蚀试验方法: GJB 323A—96[S]. 北京: 国防工业出版社, 1996.

    The Commission of Science, Technology and Industry for National Defense of the PRC. Test methods for ablation for ablators: GJB 323A—96[S]. Beijing: National Defense Industry Press, 1996(in Chinese).
    [15]
    中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites—Determination of tensile properties: GB/T 1447—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [16]
    中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites—Determination of compressive properties: GB/T 1448—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [17]
    中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites—Determination of flexural properties: GB/T 1449—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [18]
    中国国家标准化管理委员会. 纤维增强塑料层间剪切强度试验方法: GB/T 1450.1—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites—Determination of interlaminar shear strength: GB/T 1450.1—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [19]
    NIU Z, LI G, MA X, et al. Synergetic effect of O-POSS and T-POSS to enhance ablative resistant of phenolic-based silica fiber composites via strong interphase strength and ceramic formation[J]. Composites Part A: Applied Science and Manufacturing, 2022, 155: 106855. doi: 10.1016/j.compositesa.2022.106855
    [20]
    LI L, LI Y, HUAN D, et al. Z-pin effect on interlaminar mechanical and ablation performance of quartz-phenolic composites[J]. Polymer Composites, 2022, 43(5): 3228-3241. doi: 10.1002/pc.26613
    [21]
    李云宽, 丁仁兴, 于淼. 模压石英/酚醛复合材料的力学和热物理性能[J]. 宇航材料工艺, 2013, 43(4): 49-51.

    LI Yunkuan, DING Renxing, YU Miao. Thermal and mechanical properties of moulded quartz phenolic composites[J]. Aerospace Materials & Technology, 2013, 43(4): 49-51(in Chinese).
    [22]
    杨广超, 张鹏飞, 张凌峰, 等. ZrC和ZrB2对Csf/SiC-BN-(ZrC, ZrB2)复合材料组织及力学性能的影响[J]. 陶瓷学报, 2022, 43(4): 684-691.

    YANG Guangchao, ZHANG Pengfei, ZHANG Lingfeng, et al. Effects of ZrC and ZrB2 on microstructure and mechanical properties of Csf/SiC-BN-(ZrC, ZrB2) composites[J]. Journal of Ceramics, 2022, 43(4): 684-691(in Chinese).
    [23]
    CHENG H, FAN Z, HONG C, et al. Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106313. doi: 10.1016/j.compositesa.2021.106313
    [24]
    钱震, 张鸿宇, 张琪凯, 等. 高强度—中密度纳米孔树脂基防隔热复合材料的制备与性能[J]. 复合材料学报, 2023, 40(1): 83-95. doi: 10.13801/j.cnki.fhclxb.20211223.001

    QIAN Zhen, ZHANG Hongyu, ZHANG Qikai, et al. Preparation and properties of high strength-medium density nanoporous resin-based ablation/insulation integrated composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 83-95(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211223.001
    [25]
    张倩倩. Z向纱对三维正交复合材料细观结构和力学性能的影响[D]. 天津: 天津工业大学, 2013.

    ZHANG Qianqian. Effect of Z-yarn on mesoscopic structure and mechanical properties of three-dimensional orthogonal composites[D]. Tianjin: Tianjin University of Technology, 2013(in Chinese).
    [26]
    GUO J, WEN W, ZHANG H, et al. Investigation of mechanical properties for 2.5D woven composites with different weft-layer-numbers by a triple-cell model system[J]. Journal of Industrial Textiles, 2022, 51(3_suppl): 5243S-5285S.
    [27]
    LIN H, BROWN L P, LONG A C. Modelling and simulating textile structures using TexGen[J]. Advanced Materials Research, 2011, 331: 44-47. doi: 10.4028/www.scientific.net/AMR.331.44
    [28]
    XIA Z, ZHOU C, YONG Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2): 266-278. doi: 10.1016/j.ijsolstr.2005.03.055
    [29]
    YU S, ZHANG D, QIAN K. Numerical analysis of macro-scale mechanical behaviors of 3D orthogonal woven composites using a voxel-based finite element model[J]. Applied Composite Materials, 2019, 26: 65-83. doi: 10.1007/s10443-018-9707-z
    [30]
    CHAMIS C C. Simplified composite micromechanics equations for hygral, thermal and mechanical properties[C]//Ann. Conf. of the Society of the Plastics Industry (SPI) Reinforced Plastics Composites Inst. Houston: National Aeronautics and Space Administration, 1983: 1-19.
    [31]
    黄争鸣. 桥联理论研究的最新进展[J]. 应用数学和力学, 2015, 36(6): 563-581. doi: 10.3879/j.issn.1000-0887.2015.06.001

    HUANG Zhengming. Latest advancements of the bridging model theory[J]. Applied Mathematics and Mechanics, 2015, 36(6): 563-581(in Chinese). doi: 10.3879/j.issn.1000-0887.2015.06.001
    [32]
    HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(4): 329-334.
    [33]
    SHI D, LIU C, CHENG Z, et al. On the tensile behaviors of 2D twill woven SiO2f/SiO2 composites at ambient and elevated temperatures: Mesoscale analysis and in situ experimental investigation[J]. Ceramics International, 2021, 47(9): 12680-12694. doi: 10.1016/j.ceramint.2021.01.128
    [34]
    张超, 许希武, 毛春见. 三维编织复合材料渐进损伤模拟及强度预测[J]. 复合材料学报, 2011, 28(2): 222-230. doi: 10.13801/j.cnki.fhclxb.2011.02.016

    ZHANG Chao, XU Xiwu, MAO Chunjian. Progressive damage simulation and strength prediction of 3D braided composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 222-230(in Chinese). doi: 10.13801/j.cnki.fhclxb.2011.02.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(8)

    Article Metrics

    Article views (424) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return