Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
TENG Xiaodan, LI Yonghong, WEI Xiaoning, et al. Tensile and compressive properties and crack characteristics of rice husk ash and crumb rubber particles modified engineered cementitious composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3717-3726. doi: 10.13801/j.cnki.fhclxb.20231107.002
Citation: TENG Xiaodan, LI Yonghong, WEI Xiaoning, et al. Tensile and compressive properties and crack characteristics of rice husk ash and crumb rubber particles modified engineered cementitious composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3717-3726. doi: 10.13801/j.cnki.fhclxb.20231107.002

Tensile and compressive properties and crack characteristics of rice husk ash and crumb rubber particles modified engineered cementitious composites

doi: 10.13801/j.cnki.fhclxb.20231107.002
Funds:  National Natural Science Foundation of China (11962001); Guangxi Natural Science Foundation Project (2023GXNSFBA026268)
  • Received Date: 2023-09-11
  • Accepted Date: 2023-10-24
  • Rev Recd Date: 2023-10-13
  • Available Online: 2023-11-08
  • Publish Date: 2024-07-01
  • Rice husk ash is the primary supplementary cementitious material, with rubber particles injected as artificial flaws. Rice husk ash and crumb rubbers engineered cementitious composites (CR-RHA/ECC) are low carbon, ecologically friendly cementitious composites with good ductility. The effects of rubber content (0, 10%, 20%, 30%) on the ductility and cracking characteristics of CR-RHA/ECC at each curing ages (7 days and 28 days) were explored employing macroscopic mechanical properties and microscopic investigations. The results show that: With the increase of age, there is a great difference in the ductility of CR-RHA/ECC. The replacement of 10% river sand by CR weakens the ductility of CR-RHA/ECC at 7 days by 54% and increases the ductility of CR-RHA/ECC at 28 days by 67%. With the increase of age (28 days), When CR replaces 30% river sand, the ductility of CR-RHA/ECC can reach 6%, and the tensile fracture width of CR-RHA/ECC decreases by 52.79% compared with that of CR-RHA/ECC without CR replacement.

     

  • loading
  • [1]
    LI V C, WANG S X, WU C. Tensile strain-hardening behavior or polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492.
    [2]
    徐世烺, 蔡向荣, 张英华. 超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J]. 土木工程学报, 2009, 42(11): 79-85. doi: 10.3321/j.issn:1000-131X.2009.11.011

    XU Shilang, CAI Xiangrong, ZHANG Yinghua. Determination and analysis of full stress-strain curves of ultra-high toughness cement-based composites under uniaxial compression[J]. Journal of Civil Engineering, 2009, 42(11): 79-85(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.11.011
    [3]
    高淑玲, 徐世烺. PVA纤维增强水泥基复合材料拉伸特性试验研究[J]. 大连理工大学学报, 2007(2): 233-239. doi: 10.3321/j.issn:1000-8608.2007.02.016

    GAO Shuling, XU Shilang. Experimental study on tensile properties of PVA fiber reinforced cement-based composites[J]. Journal of Dalian University of Technology, 2007(2): 233-239(in Chinese). doi: 10.3321/j.issn:1000-8608.2007.02.016
    [4]
    YU J, LI H, LEUNG C K Y, et al. Matrix design for waterproof engineered cementitious composites (ECCs)[J]. Construction and Building Materials, 2017, 139: 438-446. doi: 10.1016/j.conbuildmat.2017.02.076
    [5]
    杨珊, 彭林欣, 滕晓丹. 高温后PVA纤维增强水泥基复合材料力学性能试验研究[J]. 混凝土与水泥制品, 2021(4): 49-54.

    YANG Shan, PENG Linxin, TENG Xiaodan. Experimental study on mechanical properties of PVA fiber-reinforced cement-based composites at high temperature[J]. Concrete and Cement Products, 2021(4): 49-54(in Chinese).
    [6]
    WANG J, XIAO J, ZHANG Z, et al. Action mechanism of rice husk ash and the effect on main performances of cement-based materials: A review[J]. Construction and Building Materials, 2021, 288: 123068. doi: 10.1016/j.conbuildmat.2021.123068
    [7]
    李丽华, 韩琦培, 杨星, 等. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究[J]. 土木工程学报, 2023, 56(12): 166-176.

    LI Lihua, HAN Qipei, YANG Xing, et al. Rice husk ash and cement solidification silt soil mechanics properties and microscopic mechanism research [J]. China Civil Engineering Journal, 2023, 56(12): 166-176(in Chinese).
    [8]
    HE Z H, LI L Y, DU S G. Creep analysis of concrete containing rice husk ash[J]. Cement and Concrete Composites, 2017, 80: 190-199.
    [9]
    HUANG H, GAO X, WANG H, et al. Influence of rice husk ash on strength and permeability of ultra-high performance concrete[J]. Construction and Building Materials, 2017, 149: 621-628. doi: 10.1016/j.conbuildmat.2017.05.155
    [10]
    ZHANG Z G, YANG F, LIU J C, et al. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash[J]. Cement and Concrete Research, 2020, 137: 106200. doi: 10.1016/j.cemconres.2020.106200
    [11]
    DA COSTA F B P, RIGHI D P, GRAEFF A G, et al. Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fibers[J]. Construction and Building Materials, 2019, 213: 505-513. doi: 10.1016/j.conbuildmat.2019.04.092
    [12]
    ZHANG Z, YUVARAJ A, DI J, et al. Matrix design of light weight, high strength, high ductility ECC[J]. Construction and Building Materials, 2019, 210: 188-197. doi: 10.1016/j.conbuildmat.2019.03.159
    [13]
    ABDULKADIR I, MOHAMMED B S, LIEW M S, et al. A review of the effect of waste tire rubber on the properties of ECC[J]. International Journal of Advanced and Applied Sciences, 2020, 7(8): 105-116. doi: 10.21833/ijaas.2020.08.011
    [14]
    ZHANG Z, MA H, QIAN S. Investigation on properties of ECC incorporating crumb rubber of different sizes[J]. Journal of Advanced Concrete Technology, 2015, 13(5): 241-251. doi: 10.3151/jact.13.241
    [15]
    陈爱玖, 王静, 马莹. 钢纤维橡胶再生混凝土的抗冻性试验[J]. 复合材料学报, 2015, 32(4): 933-941.

    CHEN Aijiu, WANG Jing, MA Ying. Rubber steel fiber recycled concrete frost resistance test[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 933-941(in Chinese).
    [16]
    ISMAIL M K, SHERIR M A, SIAD H, et al. Properties of self-consolidating engineered cementitious composite modified with rubber[J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018031. doi: 10.1061/(ASCE)MT.1943-5533.0002219
    [17]
    MA H, QIAN S, ZHANG Z, et al. Tailoring engineered cementitious composites with local ingredients[J]. Construction and Building Materials, 2015, 101: 584-595. doi: 10.1016/j.conbuildmat.2015.10.146
    [18]
    RAMANATHAN S, MOON H, CROLY M, et al. Suraneni, predicting the degree of reaction of supplementary cementitious materials in cementitious pastes using a pozzolanic test[J]. Construction and Building Materials, 2019, 204: 621-630.
    [19]
    HOU M, ZHANG D, LI V C. Crack width control and mechanical properties of low carbon engineered cementitious composites (ECC)[J]. Construction and Building Materials, 2022, 348: 128692.
    [20]
    中华人民共和国国家质量监督检验检疫总局. 用于水泥和混凝土中的粉煤灰: GB/T 1596—2017[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Fly ash used for cement and concrete: GB/T 1596—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
    [21]
    ASTM. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50 mm] cube specimens): ASTM C109/C109M—21[S]. West Conshohocken: ASTM, 2021.

    ASTM. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50 mm] cube specimens): ASTM C109/C109M—21[S]. West Conshohocken: ASTM, 2021.
    [22]
    SURANENI P, WEISS J. Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis[J]. Cement and Concrete Composites, 2017, 83: 273-278. doi: 10.1016/j.cemconcomp.2017.07.009
    [23]
    DURDZIŃSKI P T, BEN HAHA M, BERNAL S A, et al. Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements[J]. Materials and Structures/Materiaux et Constructions, 2017, 50(2): 135.
    [24]
    WANG J, GUO Z, YUAN Q, et al. Effects of ages on the ITZ microstructure of crumb rubber concrete[J]. Construction and Building Materials, 2020, 254: 119329. doi: 10.1016/j.conbuildmat.2020.119329
    [25]
    YANG E H, WANG S, YANG Y, et al. Fiber-bridging constitutive law of engineered cementitious composites[J]. Journal of Advanced Concrete Technology, 2008, 6(1): 181-193. doi: 10.3151/jact.6.181
    [26]
    滕晓丹, 郭健鸣, 孙辉煌. 基于深度学习的高延性水泥基复合材料单轴拉伸裂缝检查与特征定量化识别[J]. 硅酸盐学报, 2023, 51(5): 1323-1331.

    TENG Xiaodan, GUO Jianming, SUN Huihuang. Deep learning based uniaxial tensile crack inspection and feature quantification identification of high ductility cement-based composites[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1323-1331(in Chinese).
    [27]
    阚黎黎, 朱嘉伦, 王飞, 等. 聚乙烯纤维增强赤泥-碱矿渣复合材料的力学性能[J]. 复合材料学报, 2022, 33(11): 5367-5374.

    KAN Lili, ZHU Jialun, WANG Fei, et al. Polyethylene fiber reinforced mechanical properties of red mud-alkali slag composites[J]. Acta Materiae Compositae Sinica, 2022, 33(11): 5367-5374(in Chinese).
    [28]
    REDON C, LI V C, WU C, et al. Measuring and modifying interface properties of PVA fibers in ECC matrix[J]. Journal of Materials in Civil Engineering, 2001, 13(6): 399-406. doi: 10.1061/(ASCE)0899-1561(2001)13:6(399)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (273) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return