Citation: | YUAN Shike, LUO Jianlin, GAO Yibo, et al. Preparation of nano-modified cement-based thermoelectric composite and its self-power supply behaviors engineered cathodic protection for offshore structure[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2662-2673. DOI: 10.13801/j.cnki.fhclxb.20231103.003 |
[1] |
QU F, LI W, DONG W, et al. Durability deterioration of concrete under marine environment from material to structure: A critical review[J]. Journal of Building Engineering, 2021, 35: 102074. DOI: 10.1016/j.jobe.2020.102074
|
[2] |
JIN Z, CHANG H, DU F, et al. Influence of SAP on the chloride penetration and corrosion behavior of steel bar in concrete[J]. Corrosion Science, 2020, 171: 108714. DOI: 10.1016/j.corsci.2020.108714
|
[3] |
WANG Z, YU J, LI G, et al. Corrosion behavior of steel rebar embedded in hybrid CNTs-OH/polyvinyl alcohol modified concrete under accelerated chloride attack[J]. Cement and Concrete Composites, 2019, 100: 120-129. DOI: 10.1016/j.cemconcomp.2019.02.013
|
[4] |
MONTEMOR M F, SIMOES A M P, FERREIRA M G S. Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques[J]. Cement and Concrete Composites, 2003, 25: 491-502. DOI: 10.1016/S0958-9465(02)00089-6
|
[5] |
ZAKI A, CHAI H K, AGGELIS D G, et al. Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique[J]. Sensors, 2015, 15(8): 19069-19101. DOI: 10.3390/s150819069
|
[6] |
CAIRNS J, DU Y, LAW D. Structural performance of corrosion-damaged concrete beams[J]. Magazine of Concrete Research, 2008, 60(5): 359-370. DOI: 10.1680/macr.2007.00102
|
[7] |
HU J Y, ZHANG S S, CHEN E, et al. A review on corrosion detection and protection of existing reinforced concrete (RC) structures[J]. Construction and Building Materials, 2022, 325: 126718. DOI: 10.1016/j.conbuildmat.2022.126718
|
[8] |
KOLEVA D A, GUO Z, VAN BREUGEL K, et al. Conventional and pulse cathodic protection of reinforced concrete: Electrochemical behavior of the steel reinforcement after corrosion and protection[J]. Materials and Corrosion, 2009, 60(5): 344-354. DOI: 10.1002/maco.200805150
|
[9] |
邱玉婷, 鲁翰宸, 金阳, 等. 热电复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4213-4226.
QIU Yuting, LU Hanchen, JIN Yang, et al. Research progress in thermoelectric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4213-4226(in Chinese).
|
[10] |
WEI J, FAN Y, ZHAO L, et al. Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear[J]. Ceramics International, 2018, 44(6): 5829-5833. DOI: 10.1016/j.ceramint.2018.01.074
|
[11] |
JI T, ZHANG X Y, ZHANG X, et al. Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites[J]. Journal of Materials in Civil Engineering, 2018, 30(9): 04018224. DOI: 10.1061/(ASCE)MT.1943-5533.0002401
|
[12] |
崔一纬, 魏亚. 水泥基复合材料热电效应综述: 机制、材料、影响因素及应用[J]. 复合材料学报, 2020, 37(9): 2077-2093.
CUI Yiwei, WEI Ya. A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2077-2093(in Chinese).
|
[13] |
WEN S, CHUNG D D L. Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers[J]. Cement and Concrete Research, 2000, 30(8): 1295-1298. DOI: 10.1016/S0008-8846(00)00341-0
|
[14] |
MIAO T, SHI S, YAN S, et al. Integrative characterization of the thermoelectric performance of an individual multiwalled carbon nanotube[J]. Journal of Applied Physics, 2016, 120(12): 124302. DOI: 10.1063/1.4962942
|
[15] |
JI T, ZHANG X, LI W. Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings[J]. Construction and Building Materials, 2016, 115: 576-581. DOI: 10.1016/j.conbuildmat.2016.04.035
|
[16] |
WALIA S, BALENDHRAN S, NILI H, et al. Transition metal oxides—Thermoelectric properties[J]. Progress in Materials Science, 2013, 58(8): 1443-1489. DOI: 10.1016/j.pmatsci.2013.06.003
|
[17] |
CHIRITESCU C, CAHILL D, NGUYENI N, et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals[J]. Science, 2007, 315(5810): 351-353. DOI: 10.1126/science.1136494
|
[18] |
LI W, LIAO X, JI T, et al. Thermoelectric property of cement composites with MnO2 added[J]. Journal of Building Materials, 2017, 20(5): 770-773.
|
[19] |
HOU X, ZHOU Y, WANG L, et al. Growth and thermoelectric properties of Ba8Ga16Ge30 clathrate crystals[J]. Journal of Alloys and Compounds, 2009, 482(1): 544-547.
|
[20] |
SONG F, WU L, LIANG S. Giant Seebeck coefficient thermoelectric device of MnO2 powder[J]. Nanotechnology, 2012, 23(8): 085401. DOI: 10.1088/0957-4484/23/8/085401
|
[21] |
ISLAM A K M, ISLAM R, KHAN K A. Studies on the thermoelectric effect in semiconducting MnO2 thin films[J]. Journal of Materials Science: Materials in Electronics, 2005, 16(4): 203-207. DOI: 10.1007/s10854-005-0766-1
|
[22] |
HEDDEN M, FRANCIS N, HARALDSEN J T, et al. Thermoelectric properties of nano- meso- micro β-MnO2 powders as a function of electrical resistance[J]. Nanoscale Research Letters, 2015, 10(1): 292-300. DOI: 10.1186/s11671-015-1000-6
|
[23] |
中国建筑材料联合会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.
China Building Materials Federation. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: China Standards Press, 2021(in Chinese).
|
[24] |
HAN B, GUAN X, OU J. Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors[J]. Sensors and Actuators A: Physical, 2007, 135(2): 360-369. DOI: 10.1016/j.sna.2006.08.003
|
[25] |
中国建筑科学研究院. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.
China Academy of Building Research. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
|
[26] |
CAO G, SU L, ZHANG X, et al. Hydrothermal synthesis and catalytic properties of α- and β-MnO2 nanorods[J]. Materials Research Bulletin, 2010, 45(4): 425-428. DOI: 10.1016/j.materresbull.2009.12.016
|
[27] |
MAKAR J M, CHAN G W. Growth of cement hydration products on single walled carbon nanotubes[J]. Journal of the American Ceramic Society, 2010, 92(6): 1303-1310.
|
[28] |
CARRICO A, BOGAS J A, HAWREEN A, et al. Durability of multi-walled carbon nanotube reinforced concrete[J]. Construction and Building Materials, 2018, 164: 121-133. DOI: 10.1016/j.conbuildmat.2017.12.221
|
[29] |
TYSON B M, ABU AI-RUB R K, YAZDANBAKHSH A, et al. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials[J]. Journal of Materials in Civil Engineering, 2011, 23(7): 1028-1035. DOI: 10.1061/(ASCE)MT.1943-5533.0000266
|
[30] |
ASTM International. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete: ASTM C876—2009[S]. West Conshohocken: ASTM International, 2009.
|
[31] |
ZENG Y. Passive film properties and their influence on hydrogen absorption into titanium[D]. London: University of Western Ontario, 2009.
|
[32] |
ANDRADE C, ALONSO C. Corrosion rate monitoring in the laboratory and on-site[J]. Construction Building Materials, 1996, 10(5): 315-328. DOI: 10.1016/0950-0618(95)00044-5
|
[33] |
刘昂. 水滑石基功能化缓蚀-涂层防护体系构建和机制研究[D]. 青岛: 中国科学院大学, 2020.
LIU Ang. The protection system construction and mechanism research of functional corrosion inhibition-coating based on layered double hydroxides[D]. Qingdao: University of Chinese Academy of Sciences, 2020(in Chinese).
|
[34] |
SUN Z W, KONG G, CHE C S, et al. Growth behaviour of cerium-based conversion coating on ZnAl alloy[J]. Surface and Interface Analysis, 2018, 51(4): 465-474.
|
[35] |
中国钢铁工业协会. 金属和合金的腐蚀 混凝土用钢筋的阴极保护: GB/T 39154—2020[S]. 北京: 中国标准出版社, 2020.
China Iron and Steel Association. Corrosion of metals and alloys-cathodic protection of and alloys-cathodic protection of steel in concrete: GB/T 39154—2020[S]. Beijing: China Standards Press, 2020(in Chinese).
|