YUAN Shike, LUO Jianlin, GAO Yibo, et al. Preparation of nano-modified cement-based thermoelectric composite and its self-power supply behaviors engineered cathodic protection for offshore structure[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2662-2673. DOI: 10.13801/j.cnki.fhclxb.20231103.003
Citation: YUAN Shike, LUO Jianlin, GAO Yibo, et al. Preparation of nano-modified cement-based thermoelectric composite and its self-power supply behaviors engineered cathodic protection for offshore structure[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2662-2673. DOI: 10.13801/j.cnki.fhclxb.20231103.003

Preparation of nano-modified cement-based thermoelectric composite and its self-power supply behaviors engineered cathodic protection for offshore structure

Funds: National Natural Science Foundation of China (51878364); Natural Science Foundation of Shandong Province (ZR2023ME011); Cooperation Project of China Construction Eight Division (JM20191030; B2-2022-0253; B2-2022-0048; B2-2023-0014); National 111 Program, Provincial Peak Discipline Funding
More Information
  • Received Date: July 30, 2023
  • Revised Date: September 23, 2023
  • Accepted Date: October 25, 2023
  • Available Online: November 05, 2023
  • Under the background of strategic ocean and double-carbon, it is important to use cathodic protection (CP) technology to enhance the service life of offshore structures. However, it requires additional power supply for extra drive. Here, nano-size nMnO2 was synthesized by hydrothermal method, and then was mixed into cement mortar along with carbon nanotubes (CNTs) to prepare nano-modified cement-based thermoelectric composites (NTEC). 20 NTECs were connected in series to form a set of thermoelectric power generation module, and combined with electrochemical methods to comprehensively evaluate the feasibility of NTEC thermoelectric module based on differential temperature power generation directly serving as a current supply source for the reinforcement CP system of offshore structure. Results show that: The thermoelectric coefficient and thermoelectric power factor of NTEC specimens doped with 0.2wt%CNTs and 5.0wt%nMnO2 can be up to 3612 μV/℃, and 301.4 μW·m−1·℃−2, respectively. The intrinsic mechanical strength and anti-permeability are accordingly guaranteed. Applying the CP based on the temperature difference power generation of NTEC, the corrosion potential of the reinforcement bar positively shifts, and the probability of corrosion is significantly reduced. Applying the CP based on the NTEC thermoelectric module the corrosion current density of the reinforcement is reduced by 3 orders of magnitude, the corrosion charge transfer is suppressed, the corrosion rate is greatly reduced, the self-power supply of CP for reinforcement in offshore structures is realized, and its mechanical properties and durability are guaranteed when simultaneously serving as concrete cover.
  • [1]
    QU F, LI W, DONG W, et al. Durability deterioration of concrete under marine environment from material to structure: A critical review[J]. Journal of Building Engineering, 2021, 35: 102074. DOI: 10.1016/j.jobe.2020.102074
    [2]
    JIN Z, CHANG H, DU F, et al. Influence of SAP on the chloride penetration and corrosion behavior of steel bar in concrete[J]. Corrosion Science, 2020, 171: 108714. DOI: 10.1016/j.corsci.2020.108714
    [3]
    WANG Z, YU J, LI G, et al. Corrosion behavior of steel rebar embedded in hybrid CNTs-OH/polyvinyl alcohol modified concrete under accelerated chloride attack[J]. Cement and Concrete Composites, 2019, 100: 120-129. DOI: 10.1016/j.cemconcomp.2019.02.013
    [4]
    MONTEMOR M F, SIMOES A M P, FERREIRA M G S. Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques[J]. Cement and Concrete Composites, 2003, 25: 491-502. DOI: 10.1016/S0958-9465(02)00089-6
    [5]
    ZAKI A, CHAI H K, AGGELIS D G, et al. Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique[J]. Sensors, 2015, 15(8): 19069-19101. DOI: 10.3390/s150819069
    [6]
    CAIRNS J, DU Y, LAW D. Structural performance of corrosion-damaged concrete beams[J]. Magazine of Concrete Research, 2008, 60(5): 359-370. DOI: 10.1680/macr.2007.00102
    [7]
    HU J Y, ZHANG S S, CHEN E, et al. A review on corrosion detection and protection of existing reinforced concrete (RC) structures[J]. Construction and Building Materials, 2022, 325: 126718. DOI: 10.1016/j.conbuildmat.2022.126718
    [8]
    KOLEVA D A, GUO Z, VAN BREUGEL K, et al. Conventional and pulse cathodic protection of reinforced concrete: Electrochemical behavior of the steel reinforcement after corrosion and protection[J]. Materials and Corrosion, 2009, 60(5): 344-354. DOI: 10.1002/maco.200805150
    [9]
    邱玉婷, 鲁翰宸, 金阳, 等. 热电复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4213-4226.

    QIU Yuting, LU Hanchen, JIN Yang, et al. Research progress in thermoelectric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4213-4226(in Chinese).
    [10]
    WEI J, FAN Y, ZHAO L, et al. Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear[J]. Ceramics International, 2018, 44(6): 5829-5833. DOI: 10.1016/j.ceramint.2018.01.074
    [11]
    JI T, ZHANG X Y, ZHANG X, et al. Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites[J]. Journal of Materials in Civil Engineering, 2018, 30(9): 04018224. DOI: 10.1061/(ASCE)MT.1943-5533.0002401
    [12]
    崔一纬, 魏亚. 水泥基复合材料热电效应综述: 机制、材料、影响因素及应用[J]. 复合材料学报, 2020, 37(9): 2077-2093.

    CUI Yiwei, WEI Ya. A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2077-2093(in Chinese).
    [13]
    WEN S, CHUNG D D L. Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers[J]. Cement and Concrete Research, 2000, 30(8): 1295-1298. DOI: 10.1016/S0008-8846(00)00341-0
    [14]
    MIAO T, SHI S, YAN S, et al. Integrative characterization of the thermoelectric performance of an individual multiwalled carbon nanotube[J]. Journal of Applied Physics, 2016, 120(12): 124302. DOI: 10.1063/1.4962942
    [15]
    JI T, ZHANG X, LI W. Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings[J]. Construction and Building Materials, 2016, 115: 576-581. DOI: 10.1016/j.conbuildmat.2016.04.035
    [16]
    WALIA S, BALENDHRAN S, NILI H, et al. Transition metal oxides—Thermoelectric properties[J]. Progress in Materials Science, 2013, 58(8): 1443-1489. DOI: 10.1016/j.pmatsci.2013.06.003
    [17]
    CHIRITESCU C, CAHILL D, NGUYENI N, et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals[J]. Science, 2007, 315(5810): 351-353. DOI: 10.1126/science.1136494
    [18]
    LI W, LIAO X, JI T, et al. Thermoelectric property of cement composites with MnO2 added[J]. Journal of Building Materials, 2017, 20(5): 770-773.
    [19]
    HOU X, ZHOU Y, WANG L, et al. Growth and thermoelectric properties of Ba8Ga16Ge30 clathrate crystals[J]. Journal of Alloys and Compounds, 2009, 482(1): 544-547.
    [20]
    SONG F, WU L, LIANG S. Giant Seebeck coefficient thermoelectric device of MnO2 powder[J]. Nanotechnology, 2012, 23(8): 085401. DOI: 10.1088/0957-4484/23/8/085401
    [21]
    ISLAM A K M, ISLAM R, KHAN K A. Studies on the thermoelectric effect in semiconducting MnO2 thin films[J]. Journal of Materials Science: Materials in Electronics, 2005, 16(4): 203-207. DOI: 10.1007/s10854-005-0766-1
    [22]
    HEDDEN M, FRANCIS N, HARALDSEN J T, et al. Thermoelectric properties of nano- meso- micro β-MnO2 powders as a function of electrical resistance[J]. Nanoscale Research Letters, 2015, 10(1): 292-300. DOI: 10.1186/s11671-015-1000-6
    [23]
    中国建筑材料联合会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    China Building Materials Federation. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: China Standards Press, 2021(in Chinese).
    [24]
    HAN B, GUAN X, OU J. Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors[J]. Sensors and Actuators A: Physical, 2007, 135(2): 360-369. DOI: 10.1016/j.sna.2006.08.003
    [25]
    中国建筑科学研究院. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    China Academy of Building Research. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [26]
    CAO G, SU L, ZHANG X, et al. Hydrothermal synthesis and catalytic properties of α- and β-MnO2 nanorods[J]. Materials Research Bulletin, 2010, 45(4): 425-428. DOI: 10.1016/j.materresbull.2009.12.016
    [27]
    MAKAR J M, CHAN G W. Growth of cement hydration products on single walled carbon nanotubes[J]. Journal of the American Ceramic Society, 2010, 92(6): 1303-1310.
    [28]
    CARRICO A, BOGAS J A, HAWREEN A, et al. Durability of multi-walled carbon nanotube reinforced concrete[J]. Construction and Building Materials, 2018, 164: 121-133. DOI: 10.1016/j.conbuildmat.2017.12.221
    [29]
    TYSON B M, ABU AI-RUB R K, YAZDANBAKHSH A, et al. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials[J]. Journal of Materials in Civil Engineering, 2011, 23(7): 1028-1035. DOI: 10.1061/(ASCE)MT.1943-5533.0000266
    [30]
    ASTM International. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete: ASTM C876—2009[S]. West Conshohocken: ASTM International, 2009.
    [31]
    ZENG Y. Passive film properties and their influence on hydrogen absorption into titanium[D]. London: University of Western Ontario, 2009.
    [32]
    ANDRADE C, ALONSO C. Corrosion rate monitoring in the laboratory and on-site[J]. Construction Building Materials, 1996, 10(5): 315-328. DOI: 10.1016/0950-0618(95)00044-5
    [33]
    刘昂. 水滑石基功能化缓蚀-涂层防护体系构建和机制研究[D]. 青岛: 中国科学院大学, 2020.

    LIU Ang. The protection system construction and mechanism research of functional corrosion inhibition-coating based on layered double hydroxides[D]. Qingdao: University of Chinese Academy of Sciences, 2020(in Chinese).
    [34]
    SUN Z W, KONG G, CHE C S, et al. Growth behaviour of cerium-based conversion coating on ZnAl alloy[J]. Surface and Interface Analysis, 2018, 51(4): 465-474.
    [35]
    中国钢铁工业协会. 金属和合金的腐蚀 混凝土用钢筋的阴极保护: GB/T 39154—2020[S]. 北京: 中国标准出版社, 2020.

    China Iron and Steel Association. Corrosion of metals and alloys-cathodic protection of and alloys-cathodic protection of steel in concrete: GB/T 39154—2020[S]. Beijing: China Standards Press, 2020(in Chinese).
  • Related Articles

    [1]LI Buwei, YAO Junping, CHEN Guoxin, LI Yiran, LIANG Chaoqun. Effect of porosity defects on crack initiation and propagation behavior in SiC/AZ91D composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1554-1566. DOI: 10.13801/j.cnki.fhclxb.20230711.002
    [2]LIANG Chaoqun, YAO Junping, LI Yiran, XIAO Peng. Crack initiation and propagation mechanism during uniaxial compression of SiC/AZ91D magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4282-4293. DOI: 10.13801/j.cnki.fhclxb.20220922.003
    [3]LIU Chengyu, CHEN Chenghai, ZHANG Xiangxiang, CAO Yangbing, HE Xiyang. Crack propagation law and failure precursor of steel fiber reinforced concrete based on acoustic emission and microseism monitoring[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2240-2250. DOI: 10.13801/j.cnki.fhclxb.20220725.001
    [4]ZHANG Zhexuan, ZHOU Zaifeng, SHAN Quan, LI Zulai, JIANG Yehua. Effect of WCP shape of WCP/Fe composites on thermal fatigue crack propagation behavior based on stress intensity factor[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 408-414. DOI: 10.13801/j.cnki.fhclxb.20190426.001
    [5]WU Qingxin, XIAO Yi, XUE Yuande. A quasi-static numerical analysis of crack dynamic propagation in double cantilever beam specimens[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1179-1188. DOI: 10.13801/j.cnki.fhclxb.20180726.002
    [6]ZHAO Zhenbo, XU Xiwu, GUO Shuxiang. Fatigue crack growth rate determination of graded titanium alloys and the influence of gradient for propagation life[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 168-174. DOI: 10.13801/j.cnki.fhclxb.20160331.001
    [7]LYU Yi, XU Xiwu, GUO Shuxiang. Finite element analysis of crack propagation paths and crack initiation loads in graded composites[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1099-1106. DOI: 10.13801/j.cnki.fhclxb.20141022.001
    [8]LIU Weixian, ZHOU Guangming, WANG Xinfeng, GAO Jun. Theoretical analysis of crack propagation in composite DCB specimens[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 207-212.
    [9]YU Hanghai, WANG Shouren, YANG Liying. Crack propagation resistance behavior of Si3N4 composites reinforced by BN nanotubes[J]. Acta Materiae Compositae Sinica, 2012, (6): 152-158.
    [10]WANG Can, CHEN Haoran. Experimental investigation and numerical simulation of interfacial crack kinking in foam core composite sandwich beams[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 129-135.
  • Cited by

    Periodical cited type(4)

    1. 赵肖娟,王亚楠,邓璐,于嫚,孟志新. 创新创业背景下高分子物理的课堂设计——以BC/GO/PVA复合膜的制备及力学性能研究为例. 广东化工. 2024(13): 155-157 .
    2. 韩定,范晓天,姜瑾,刘辉辉,王梦瑶,王智. 聚苯并噁嗪/纤维素纳米晶复合材料的制备及性能. 工程塑料应用. 2022(04): 7-13 .
    3. 刘新路,罗立君,罗静,张茂盛,党新栋,刘首岐,倪书振. 壳聚糖-多巴胺/蒙脱土复合膜的制备和抗水性能研究. 纤维素科学与技术. 2022(02): 28-34 .
    4. 杨亮,李韦霖,宋鑫钥,王梦菲,李文全. 基于聚乙烯醇复合膜的改性研究进展. 印染助剂. 2022(11): 5-11 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (461) PDF downloads (33) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return