Volume 41 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
LI Zeyu, DENG Xialing, HAN Wei, et al. High toughness and self-healing conductive hydrogels of chitosan-poly acrylic acid-MXene and capability for strain sensors[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2074-2082. doi: 10.13801/j.cnki.fhclxb.20231031.005
Citation: LI Zeyu, DENG Xialing, HAN Wei, et al. High toughness and self-healing conductive hydrogels of chitosan-poly acrylic acid-MXene and capability for strain sensors[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2074-2082. doi: 10.13801/j.cnki.fhclxb.20231031.005

High toughness and self-healing conductive hydrogels of chitosan-poly acrylic acid-MXene and capability for strain sensors

doi: 10.13801/j.cnki.fhclxb.20231031.005
Funds:  National Natural Science Foundation of China (52103213); Plan of Jianghan University (2021yb019)
  • Received Date: 2023-07-25
  • Accepted Date: 2023-10-10
  • Rev Recd Date: 2023-09-15
  • Available Online: 2023-11-01
  • Publish Date: 2024-04-15
  • Chitosan-based conductive hydrogels have attracted extensive attention in electronic skins, human health monitoring, and flexible wearable sensors. In this work, MXene was dispersed in acrylic acid-chitosan solution, and then the acrylic acid monomer was in situ polymerized to synthesis the chitosan-poly(acrylic acid)-MXene hydrogels (CS-PAA-MXene). CS-PAA-MXene shows excellent mechanical properties. The tensile strength of the CS-PAA-MXene is as high as 0.6 MPa, and its elongation at break and toughness reach 1450% and 2.6 MJ·m−3, respectively. CS-PAA-MXene can adhere to various surfaces, including glass, plastic, rubber, copper and aluminum, etc. The maximum peeling force on the glass can reach 175 N·m−1. After the cut CS-PAA-MXene contacts each other for 2.5 s, its resistance value returns to the pre-cut value, suggesting CS-PAA-MXene has excellent self-healing performance. CS-PAA-MXene strain sensors have been successfully used to detect a wide range of human movements, such as the joint flexions of finger, elbow and knee. Due to the cationic charge and antibacterial properties of chitosan, CS-PAA-MXene conductive hydrogels will have a good application prospect in self-adhesive and high-extensibility flexible sensors.

     

  • loading
  • [1]
    LI G, HUANG K X, DENG J E, et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics[J]. Advanced Materials, 2022, 34(15): 2200261. doi: 10.1002/adma.202200261
    [2]
    GAMBOA J, PAULO-MIRASOL S, ESTRANY F, et al. Recent progress in biomedical sensors based on conducting polymer hydrogels[J]. ACS Applied Bio Materials, 2023, 6(5): 1720-1741. doi: 10.1021/acsabm.3c00139
    [3]
    江文静, 廖静文, 张雪慧, 等. 导电复合水凝胶的分类及其在柔性可穿戴设备中的应用[J]. 复合材料学报, 2023, 40(4): 1879-1895. doi: 10.13801/j.cnki.fhclxb.20220926.002

    JIANG Wenjing, LIAO Jingwen, ZHANG Xuehui, et al. Classification of conductive composite hydrogels and their application in flexible wearable devices[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1879-1895(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220926.002
    [4]
    LIU Y P, WANG L L, MI Y Y, et al. Transparent stretchable hydrogel sensors: Materials, design and applications[J]. Journal of Materials Chemistry C, 2022, 10(37): 13351-13371. doi: 10.1039/D2TC01104B
    [5]
    ZHANG S P, ZHAO B, ZHANG D, et al. Conductive hydrogels incorporating carbon nanoparticles: A review of synthesis, performance and applications[J]. Particuology, 2023, 83: 212-231. doi: 10.1016/j.partic.2023.06.002
    [6]
    ZHANG Q, CHEN Y J, WEI P D, et al. Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures[J]. Materials Today, 2021, 51: 27-38. doi: 10.1016/j.mattod.2021.10.030
    [7]
    SAHARIAH P, MÁSSON M. Antimicrobial chitosan and chitosan derivatives: A review of the structure-activity relationship[J]. Biomacromolecules, 2017, 18(11): 3846-3868. doi: 10.1021/acs.biomac.7b01058
    [8]
    SARMAH D, AHMAD RATHER M, SARKAR A, et al. Self-cross-linked starch/chitosan hydrogel as a biocompatible vehicle for controlled release of drug[J]. International Journal of Biological Macromolecules, 2023, 237: 124206. doi: 10.1016/j.ijbiomac.2023.124206
    [9]
    HUANG W J, WANG Y X, HUANG Z Q, et al. On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41076-41088. doi: 10.1021/acsami.8b14526
    [10]
    DUAN J J, LIANG X C, GUO J H, et al. Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks[J]. Advanced Materials, 2016, 28(36): 8037-8044. doi: 10.1002/adma.201602126
    [11]
    SUGINTA W, KHUNKAEWLA P, SCHULTE A. Electrochemical biosensor applications of polysaccharides chitin and chitosan[J]. Chemical Reviews, 2013, 113(7): 5458-5479. doi: 10.1021/cr300325r
    [12]
    CAO J F, LI J H, CHEN Y M, et al. Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness[J]. Advanced Functional Materials, 2018, 28(23): 1800739. doi: 10.1002/adfm.201800739
    [13]
    JIANG X C, XIANG N P, WANG J Q, et al. Preparation and characterization of hybrid double network chitosan/poly (acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking[J]. Carbohydrate Polymers, 2017, 173: 701-706. doi: 10.1016/j.carbpol.2017.06.003
    [14]
    FENG Y, GAO H L, WU D, et al. Biomimetic lamellar chitosan scaffold for soft gingival tissue regeneration[J]. Advanced Functional Materials, 2021, 31(43): 2105348. doi: 10.1002/adfm.202105348
    [15]
    LEI D D, LIU N S, SU T Y, et al. Roles of MXene in pressure sensing: Preparation, composite structure design, and mechanism[J]. Advanced Materials, 2022, 34(52): 2110608. doi: 10.1002/adma.202110608
    [16]
    AMARA U, HUSSAIN I, AHMAD M, et al. 2D MXene-based biosensing: A review[J]. Small, 2023, 19(2): 2205249. doi: 10.1002/smll.202205249
    [17]
    LI M K, ZHANG Y F, LIAN L, et al. Flexible accelerated-wound-healing antibacterial MXene-based epidermic sensor for intelligent wearable human-machine interaction[J]. Advanced Functional Materials, 2022, 32(47): 2208141. doi: 10.1002/adfm.202208141
    [18]
    HO D H, CHOI Y Y, JO S B, et al. Sensing with MXenes: Progress and prospects[J]. Advanced Materials, 2021, 33(47): 2005846. doi: 10.1002/adma.202005846
    [19]
    李明展, 李恩, 潘亚敏, 等. 电磁屏蔽导电涂料的研究与应用进展[J]. 复合材料学报, 2024, 41(2): 573-592.

    LI Mingzhan, LI En, PAN Yamin, et al. Research and application of electromagnetic shielding conductive coating[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 573-592(in Chinese).
    [20]
    张文枭, 左杏薇, 曲丽君, 等. 基于导电纤维的柔性电子器件研究进展[J]. 复合材料学报, 2023, 40(2): 688-709. doi: 10.13801/j.cnki.fhclxb.20220511.002

    ZHANG Wenxiao, ZUO Xingwei, QU Lijun, et al. Research progress of flexible electronic devices based on conductive fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 688-709(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220511.002
    [21]
    ZHAI H L, WANG T T, YUE C, et al. Self-healing, adhesive, and antioxidant MXene-reinforced conductive hydrogels for stain sensor[J]. Materials Today Communications, 2023, 35: 106245. doi: 10.1016/j.mtcomm.2023.106245
    [22]
    LI Q Q, ZHI X R, XIA Y F, et al. Ultrastretchable high-conductivity MXene-based organohydrogels for human health monitoring and machine-learning-assisted recognition[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 19435-19446. doi: 10.1021/acsami.3c00432
    [23]
    LI Y X, YAN J H, LIU Y J, et al. Super tough and intelligent multibond network physical hydrogels facilitated by Ti3C2T x MXene nanosheets[J]. ACS Nano, 2022, 16(1): 1567-1577. doi: 10.1021/acsnano.1c10151
    [24]
    GE G, ZHANG Y Z, ZHANG W L, et al. Ti3C2T x MXene-activated fast gelation of stretchable and self-healing hydrogels: A molecular approach[J]. ACS Nano, 2021, 15(2): 2698-2706. doi: 10.1021/acsnano.0c07998
    [25]
    LI X B, HE L Z, LI Y F, et al. Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors[J]. ACS Nano, 2021, 15(4): 7765-7773. doi: 10.1021/acsnano.1c01751
    [26]
    WANG Y X, YUE Y, CHENG F, et al. Ti3C2T x MXene-based flexible piezoresistive physical sensors[J]. ACS Nano, 2022, 16(2): 1734-1758. doi: 10.1021/acsnano.1c09925
    [27]
    GUO W Y, MAI T A, HUANG L Z, et al. Multifunctional MXene conductive zwitterionic hydrogel for flexible wearable sensors and arrays[J]. ACS Applied Materials & Interfaces, 2023, 15(20): 24933-24947. doi: 10.1021/acsami.3c03919
    [28]
    LIU Y Q, XU D R, DING Y, et al. A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@chitosan assembly for highly stretchable and sensitive wearable skin[J]. Journal of Materials Chemistry B, 2021, 9(42): 8862-8870. doi: 10.1039/D1TB01798E
    [29]
    ZHANG Y T, LI S H, HUANG R, et al. Stabilizing MXene-based nanofiltration membrane by forming analogous semi-interpenetrating network architecture using flexible poly(acrylic acid) for effective wastewater treatment[J]. Journal of Membrane Science, 2022, 648: 120360. doi: 10.1016/j.memsci.2022.120360
    [30]
    LI S N, YU Z R, GUO B F, et al. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2T x MXene hydrogels for wide-temperature strain sensing[J]. Nano Energy, 2021, 90: 106502. doi: 10.1016/j.nanoen.2021.106502
    [31]
    BIESINGER M C, LAU L W M, GERSON A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn[J]. Applied Surface Science, 2010, 257(3): 887-898. doi: 10.1016/j.apsusc.2010.07.086
    [32]
    LI N, SHAO L P, XIA Q, et al. Long-term stable and catalytic 2D MXene nanosheets wrapped with dialdehyde xylan for ultrafast gelation[J]. Green Chemistry, 2023, 25(11): 4309-4318. doi: 10.1039/D3GC00363A
    [33]
    WANG H, GUO M L, WU Y P, et al. Tough, highly stretchable and self-healing poly(acrylic acid) hydrogels reinforced by functionalized basalt fibers[J]. Materials Research Express, 2020, 7(6): 065307. doi: 10.1088/2053-1591/ab9857
    [34]
    ZENG L Y, WANG X C, WEN Y, et al. Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors[J]. Carbohydrate Polymers, 2023, 300: 120229. doi: 10.1016/j.carbpol.2022.120229
    [35]
    CAO J F, CAI Y, YU L S, et al. Dual physically crosslinked hydrogels based on the synergistic effects of electrostatic and dipole-dipole interactions[J]. Journal of Materials Chemistry B, 2019, 7(4): 676-683. doi: 10.1039/C8TB03032D
    [36]
    ZHAO Z J, QIN X Z, CAO L L, et al. Chitosan-enhanced nonswelling hydrogel with stable mechanical properties for long-lasting underwater sensing[J]. International Journal of Biological Macromolecules, 2022, 212: 123-133. doi: 10.1016/j.ijbiomac.2022.05.102
    [37]
    FAN C H, WANG D, HUANG J Y, et al. A highly sensitive epidermal sensor based on triple-bonded hydrogels for strain/pressure sensing[J]. Composites Communications, 2021, 28: 100951. doi: 10.1016/j.coco.2021.100951
    [38]
    ZHENG H Y, LIN N, HE Y Y, et al. Self-healing, self-adhesive silk fibroin conductive hydrogel as a flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40013-40031. doi: 10.1021/acsami.1c08395
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (416) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return