Volume 41 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
ZHANG Hang, REN Mingfa, WANG Lei, et al. A method for predicting dome thickness layer by layer of filament wound composite pressure vessel[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3797-3803. doi: 10.13801/j.cnki.fhclxb.20231020.001
Citation: ZHANG Hang, REN Mingfa, WANG Lei, et al. A method for predicting dome thickness layer by layer of filament wound composite pressure vessel[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3797-3803. doi: 10.13801/j.cnki.fhclxb.20231020.001

A method for predicting dome thickness layer by layer of filament wound composite pressure vessel

doi: 10.13801/j.cnki.fhclxb.20231020.001
Funds:  National Natural Science Foundation of China (12272078)
  • Received Date: 2023-09-18
  • Accepted Date: 2023-10-13
  • Rev Recd Date: 2023-10-12
  • Available Online: 2023-10-23
  • Publish Date: 2024-07-01
  • Due to the influence of fiber winding molding process and the variable curvature/thickness of the dome, the stress state of the dome of the composite pressure vessel was relatively complicated. It was of great significance to accurately predict the thickness of the winding layer of the dome, which was of great significance for constructing a high-precision finite element model and guiding engineering applications. In order to solve the above problems, this study developed a layer-by-layer prediction method for the winding layer thickness of composite pressure vessel dome based on the dual formula method and cubic spline function method. The effects of polar hole radius, the thickness of single-layer yarn thickness and number of winding layers on the thickness and winding angle of the dome were studied. The results show that as the polar hole radius increases, the thickness of the single-layer yarn sheet in the dome decreases gradually, the extreme value of the fiber winding layer of the dome gradually decreases, and the variation of winding angle at the equatorial circle decreases with the decrease of the radius of the polar hole and the thickness of single-layer yarn. Furthermore, by comparing the thickness of each layer of the dome, it is found that the thickness of each winding layer from the inner layer to the outer increases first, then decreases, and finally tends to be the same as the radius of parallel circle increases.

     

  • loading
  • [1]
    GRAMOLL K, ONODA J, NAMIKI F. Dome thcikness of filament wound pressure vessels[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 1990, 33(100): 66-79.
    [2]
    祖磊, 穆建桥, 王继辉, 等. 基于非测地线纤维缠绕压力容器线型设计与优化[J]. 复合材料学报, 2016, 33(5): 1125-1131. doi: 10.13801/j.cnki.fhclxb.20160112.003

    ZU Lei, MU Jianqiao, WANG Jihui, et al. Pattern design and optimization of filament-winding pressure vessels based on non-geodesics[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 1125-1131(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160112.003
    [3]
    边文凤, 贾宝贤, 杜善义. 伪弹性合金内衬复合材料压力容器的强度分析[J]. 复合材料学报, 2009, 26(1): 146-149. doi: 10.3321/j.issn:1000-3851.2009.01.025

    BIAN Wenfeng, JIA Baoxian, DU Shanyi. Analysis on the strength of composite pressure vessels with pseudo-elastic inner alloy lining[J]. Acta Materiae Compositae Sinica, 2009, 26(1): 146-149(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.01.025
    [4]
    沈军, 谢怀勤, 侯涤洋. 纤维缠绕聚合物基复合材料压力容器的可靠性设计[J]. 复合材料学报, 2006, 23(4): 124-128. doi: 10.3321/j.issn:1000-3851.2006.04.022

    SHEN Jun, XIE Huaiqin, HOU Diyang. Reliability design of fiber wound reinforced plastics pressure vessel[J]. Acta Materiae Compositae Sinica, 2006, 23(4): 124-128(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.022
    [5]
    MURTHY P, PHOENIX S. Designing of a fleet-leader program for carbon composite overwrapped pressure vessels[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: AIAA, 2009: 2517.
    [6]
    CHE J, HAN M, CHANG S. Prediction of composite layer thickness for Type III hydrogen pressure vessel at the dome part[J]. Composite Structures, 2021, 271(1-2): 114177.
    [7]
    SATO T. Failure modes and stresses of pressure vessels and piping (3): Progressive deformation ratcheting and fatigue fracture (1)[J]. European Journal of Biochemistry, 2000, 267(24): 7006-7014.
    [8]
    赫晓东, 王荣国, 矫维成, 等. 先进复合材料压力容器[M]. 北京: 科学出版社, 2016: 49.

    HE Xiaodong, WANG Rongguo, JIAO Weicheng, et al. Advanced composite pressure vessel[M]. Beijing: Science Press, 2016: 49(in Chinese).
    [9]
    WANG Y, DAI X T, YOU H X, et al. Research on the design of hydrogen supply system of 70 MPa hydrogen storage cylinder for vehicles[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19189-19195. doi: 10.1016/j.ijhydene.2018.08.138
    [10]
    BERRO RAMIREZ J P, HALM D, GRANDIDIER J C, et al. 700 bar type IV high pressure hydrogen storage vessel burst—Simulation and experimental validation[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13183-13192. doi: 10.1016/j.ijhydene.2015.05.126
    [11]
    左千. 纤维缠绕复合材料压力容器爆破压力研究与优化设计[D]. 杭州: 浙江大学, 2022.

    ZUO Qian. Burst pressure study and design optimization for filament wound composite pressure vessels[D]. Hangzhou: Zhejiang University, 2022(in Chinese).
    [12]
    HARTUNG R F. Planar-wound filamentary pressure vessels[J]. AIAA Journal, 1963, 1(12): 2842-2844. doi: 10.2514/3.2181
    [13]
    KNOELL A C. Structural design and stress analysis program for advanced composite filament-wound axisymmetric pressure vessels (COMTANK)[J]. Computer-Aided Design, 1972, 5(4): 267.
    [14]
    矫维成, 王荣国, 刘文博, 等. 纤维缠绕复合材料压力容器封头厚度预测[J]. 复合材料学报, 2010, 27(5): 116-121. doi: 10.13801/j.cnki.fhclxb.2010.05.015

    JIAO Weicheng, WANG Rongguo, LIU Wenbo, et al. Dome thickness prediction of composite pressure vessels[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 116-121(in Chinese). doi: 10.13801/j.cnki.fhclxb.2010.05.015
    [15]
    顾付伟, 朱晓磊, 陆晓峰, 等. 一种改进的复合材料压力容器封头纤维厚度预测方法[C]//中国机械工程学会压力容器分会、合肥通用机械研究院有限公司. 第十届全国压力容器学术会议论文集. 合肥: 合肥工业大学出版社, 2021: 422-432.

    GU Fuwei, ZHU Xiaolei, LU Xiaofeng, et al. An improved fiber thickness prediction method for composite pressure vessel dome[C]//Chinese Mechanical Engineering Society Pressure Vessel Branch and General Machinery Research Institute CO., LTD. Proceedings of the 10th National Pressure Vessel Academic Conference. Hefei: Hefei University of Technology Publishing House, 2021: 422-432(in Chinese).
    [16]
    张桂明, 宋春雨, 祖磊, 等. 纤维缠绕储氢气瓶逐层更新建模方法与性能评估[J]. 复合材料科学与工程, 2023(2): 60-66. doi: 10.19936/j.cnki.2096-8000.20230228.008

    ZHANG Guiming, SONG Chunyu, ZU Lei, et al. Modeling method and performance evaluation of filament-wound hydrogen storage cylinder with layer-by-layer renewal[J]. Composites Science and Engineering, 2023(2): 60-66(in Chinese). doi: 10.19936/j.cnki.2096-8000.20230228.008
    [17]
    祖磊, 金书明, 张骞, 等. 基于精细化模型的纤维缠绕压力容器失效行为及容积特性影响因素分析[J]. 复合材料科学与工程, 2021(12): 40-47. doi: 10.19936/j.cnki.2096-8000.20210528.031

    ZU Lei, JIN Shuming, ZHANG Qian, et al. Failure behavior and influencing factors of volume characteristics of filament wound pressure vessel based on refined model[J]. Composites Science and Engineering, 2021(12): 40-47(in Chinese). doi: 10.19936/j.cnki.2096-8000.20210528.031
    [18]
    陈学东, 范志超, 郑津洋, 等. 压力容器绿色制造技术[M]. 北京: 机械工业出版社, 2016: 112-118.

    CHEN Xuedong, FAN Zhichao, ZHENG Jinyang, et al. Green manufacturing technology of pressure vessel[M]. Beijing: China Machine Press, 2016: 112-118(in Chinese).
    [19]
    WANG R G, JIAO W C, LIU W B, et al. A new method for predicting dome thickness of composite pressure vessels[J]. Journal of Reinforced Plastics and Composites, 2010, 29(22): 3345-3352. doi: 10.1177/0731684410376330
    [20]
    鄢家乐, 陈学东, 范志超, 等. 70 MPa车载IV型储氢气瓶铺层设计与实验验证[J]. 西安交通大学学报, 2022, 56(10): 71-80. doi: 10.7652/xjtuxb202210007

    YAN Jiale, CHEN Xuedong, FAN Zhichao, et al. Layered design and experimental verification of 70 MPa vehicle-mounted type IV hydrogen storage cylinder[J]. Journal of Xi'an Jiaotong University, 2022, 56(10): 71-80(in Chinese). doi: 10.7652/xjtuxb202210007
    [21]
    李德翔. 氢气瓶缠绕工艺分析及机构设计[D]. 上海: 东华大学, 2022.

    LI Dexiang. Winding process analysis and mechanism design of hydrogen cylinder[D]. Shanghai: Donghua University, 2022(in Chinese).
    [22]
    缐永兴. 碳纤维全缠绕复合气瓶缠绕方式的设计与选择[D]. 北京: 北京工业大学, 2015.

    XIAN Yongxing. Winding pattern design and selection of full wrapped composite cylinders[D]. Beijing: Beijing University of Technology, 2015(in Chinese).
    [23]
    王迪. 不同缠绕工艺下复合材料气瓶力学性能研究[D]. 大连: 大连理工大学, 2017.

    WANG Di. Study on mechanical properties of composite cylinder under different winding technology[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [24]
    贾晓龙, 李刚, 薛忠民, 等. 碳纤维/环氧树脂在橡胶内衬表面的全缠绕工艺设计[J]. 玻璃钢/复合材料, 2009(2): 61-64.

    JIA Xiaolong, LI Gang, XUE Zhongmin, et al. Winding process design fiber/epoxy on rubber liner[J]. Glass Fiber Reinforced Plastic/Composite Material, 2009(2): 61-64(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (507) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return