Volume 41 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
YE Xinli, ZHANG Haiyang, MA Xiaomin, et al. Preparation of resorcinol-formaldehyde enhanced silica aerogels and their absorption properties[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1890-1899. doi: 10.13801/j.cnki.fhclxb.20230928.001
Citation: YE Xinli, ZHANG Haiyang, MA Xiaomin, et al. Preparation of resorcinol-formaldehyde enhanced silica aerogels and their absorption properties[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1890-1899. doi: 10.13801/j.cnki.fhclxb.20230928.001

Preparation of resorcinol-formaldehyde enhanced silica aerogels and their absorption properties

doi: 10.13801/j.cnki.fhclxb.20230928.001
Funds:  Fundamental Research Funds for the Central Universities (D5000210522); Natural Science Foundation of Shaanxi Province (2022JQ-482); Guangdong Basic and Applied Basic Research Foundation (2021A1515111155); China Postdoctoral Science Foundation (2021M702665)
  • Received Date: 2023-06-19
  • Accepted Date: 2023-09-09
  • Rev Recd Date: 2023-09-03
  • Available Online: 2023-09-28
  • Publish Date: 2024-04-15
  • A composite material of resorcinol-formaldehyde (RF) enhanced silica dioxide aerogel (RF/SiO2) had been successfully synthesized by introducing RF to build a porous framework through the sol-gel technique, followed by ambient pressure drying to explore the possibility of the application of silica dioxide aerogel in electromagnetic microwave absorption. The RF/SiO2 aerogel was then subjected to heat treatment, and its microstructure and physicochemical properties after heat treatment were characterized using SEM, XRD, and other methods. The influence of heat treatment temperature on the microwave absorption performance of RF/SiO2 aerogel was investigated. The results show that the microwave absorption performance of RF/SiO2 aerogel is significantly improved with increasing heat treatment temperature. At a heat treatment temperature of 1500℃, the RF/SiO2 aerogel exhibits a minimum reflection loss of −48.42 dB at a thickness of 4.05 mm. At a thickness of 3.45 mm, the effective absorption bandwidth reaches 2.06 GHz, demonstrating excellent electromagnetic wave absorption performance. This study provides guidance for the preparation of high-performance microwave-absorbing materials.

     

  • loading
  • [1]
    SONG L, FAN B, CHEN Y, et al. Multifunctional SiC nanofiber aerogel with superior electromagnetic wave absorption[J]. Ceramics International, 2022, 48(17): 25140-25150. doi: 10.1016/j.ceramint.2022.05.174
    [2]
    CHENG Y, XIE Y, MA Y, et al. Optimization of ion/electron channels enabled by multiscale MXene aerogel for integrated self-healable flexible energy storage and electronic skin system[J]. Nano Energy, 2023, 107: 108131. doi: 10.1016/j.nanoen.2022.108131
    [3]
    LIU J, LIU J, SHI F, et al. A facile pore size controlling strategy to construct rigid/flexible silica aerogels for super heat insulation and VOCs adsorption[J]. Chemical Engineering Journal, 2022, 450: 138196. doi: 10.1016/j.cej.2022.138196
    [4]
    CHEN S, SHAO Q, HU L, et al. Hydrophobic and magnetic fabrication of hydroxyethyl cellulose-lignin aerogel through ultrasound enhancement for efficient oil/water separation[J]. Journal of Water Process Engineering, 2023, 52: 103503. doi: 10.1016/j.jwpe.2023.103503
    [5]
    SHAHZADI I, WU Y, LIN H, et al. Yeast biomass ornamented macro-hierarchical chitin nanofiber aerogel for enhanced adsorption of cadmium(II) ions[J]. Journal of Hazardous Materials, 2023, 453: 131312. doi: 10.1016/j.jhazmat.2023.131312
    [6]
    ANDERSON A M, BRUNO B A, SANTOS J, et al. PGM nanoparticle-based alumina aerogels for three-way catalyst applications[J]. Catalysis Communications, 2022, 172: 106547. doi: 10.1016/j.catcom.2022.106547
    [7]
    WAN Y, WANG J, LI Z. Effect of modified SiO2 aerogel on the properties of inorganic cementing materials[J]. Materials Letters, 2023, 341: 134217. doi: 10.1016/j.matlet.2023.134217
    [8]
    GAO X, XING Z, LI Z, et al. A review on recent advances in carbon aerogels: Their preparation and use in alkali-metal ion batteries[J]. New Carbon Materials, 2020, 35(5): 486-507. doi: 10.1016/S1872-5805(20)60504-2
    [9]
    WANG Z, ZHAO H, DAI D, et al. Ultralight, tunable monolithic SiC aerogel for electromagnetic absorption with broad absorption band[J]. Ceramics International, 2022, 48(18): 26416-26424. doi: 10.1016/j.ceramint.2022.05.332
    [10]
    TENG X, ZHANG B, YIN L, et al. Facile fabrication of superior Pd and Ce containing SiO2 aerogel composite adsorbents for deep desulfurization of model fuels and aromatics[J]. Materials Chemistry and Physics, 2023, 301: 127562. doi: 10.1016/j.matchemphys.2023.127562
    [11]
    JIANG D, QIN J, ZHOU X, et al. Improvement of thermal insulation and compressive performance of Al2O3-SiO2 aerogel by doping carbon nanotubes[J]. Ceramics International, 2022, 48(11): 16290-16299. doi: 10.1016/j.ceramint.2022.02.178
    [12]
    XU M, LIU Z, ZHANG X, et al. Steam reforming of biomass gasification tar over Ni-based catalyst supported by TiO2-SiO2 composite[J]. Fuel, 2023, 343: 127934. doi: 10.1016/j.fuel.2023.127934
    [13]
    ZHAO Z, LI P, LI Y, et al. Durable thermal fluid super-repellency of elastic fluorine-modified SiO2@sponge composite aerogel[J]. Chemical Engineering Journal, 2023, 454: 140247. doi: 10.1016/j.cej.2022.140247
    [14]
    YANG M, YAGN L, CHEN Z, et al. Flexible electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation[J]. Ceramics International, 2023, 49(6): 9165-9172. doi: 10.1016/j.ceramint.2022.11.076
    [15]
    WANG Y, CHU C, DUAN C, et al. Thermal insulation of 3D printed complex and miniaturized SiO2 aerogels at medium-high temperatures[J]. Journal of Non-Crystalline Solids, 2023, 608: 122251. doi: 10.1016/j.jnoncrysol.2023.122251
    [16]
    YE X, CHEN Z, ZHANG J, et al. SiC network reinforced SiO2 aerogel with improved compressive strength and preeminent microwave absorption at elevated temperatures[J]. Ceramics International, 2021, 47(22): 31497-31505. doi: 10.1016/j.ceramint.2021.08.027
    [17]
    MAO B, XIA X, QIN R, et al. Microstructure evolution and microwave absorbing properties of novel double-layered SiC reinforced SiO2 aerogel[J]. Journal of Alloys and Compounds, 2023, 936: 68314.
    [18]
    XIANG Z, HE Q, WANG Y, et al. Preparation and electromagnetic wave absorption properties of SiC/SiO2 nanocomposites with different special structures[J]. Applied Surface Science, 2022, 599: 153968. doi: 10.1016/j.apsusc.2022.153968
    [19]
    TANG R, WANG H, CHEN Y, et al. Flexible preparation of nanoporous SiO2 aerogel as novel adsorbent for efficient adsorption of Zearalenone[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109828. doi: 10.1016/j.jece.2023.109828
    [20]
    SAMANTA S, KHILARI S, BHUNIA K, et al. Double-metal-ion-exchanged mesoporous Zeolite as an efficient electrocatalyst for alkaline water oxidation: Synergy between Ni-Cu and their contents in catalytic activity enhancement[J]. The Journal of Physical Chemistry C, 2018, 122(20): 10725-10736. doi: 10.1021/acs.jpcc.8b01769
    [21]
    PANG H, DUAN Y, DAI X, et al. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption[J]. Journal of Materials Science and Technology, 2021, 88: 203-214. doi: 10.1016/j.jmst.2021.01.072
    [22]
    MA Y, QUAN B, ZENG Z, et al. Multiple interface-induced evolution of electromagnetic patterns for efficient microwave absorption at low thickness[J]. Inorganic Chemistry Frontiers, 2021, 8(7): 1810-1818. doi: 10.1039/D0QI01486A
    [23]
    GREEN M, CHEN X. Recent progress of nanomaterials for microwave absorption[J]. Journal of Materiomics, 2019, 5(4): 503-541. doi: 10.1016/j.jmat.2019.07.003
    [24]
    LI H, YUAN X, ZHAO P, et al. A synergistic strategy for SiC/C nanofibers@MXene with core-sheath microstructure toward efficient electromagnetic wave absorption and photothermal conversion[J]. Applied Surface Science, 2023, 613: 155998. doi: 10.1016/j.apsusc.2022.155998
    [25]
    CHENG R, WANG Y, DI X, et al. Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions[J]. Journal of Materials Science and Technology, 2022, 129: 15-26. doi: 10.1016/j.jmst.2022.04.031
    [26]
    LU Z, WANG Y, DI X, et al. Heterostructure design of carbon fiber@graphene@layered double hydroxides synergistic microstructure for lightweight and flexible microwave absorption[J]. Carbon, 2022, 197: 466-475. doi: 10.1016/j.carbon.2022.06.075
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (265) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return