Volume 41 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZHANG Xiaoyu, JIA Xuhong, DING Sijie, et al. Pyrolysis kinetics of cabin panel materials for civil aircraft at low ambient pressure[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1840-1851. doi: 10.13801/j.cnki.fhclxb.20230918.002
Citation: ZHANG Xiaoyu, JIA Xuhong, DING Sijie, et al. Pyrolysis kinetics of cabin panel materials for civil aircraft at low ambient pressure[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1840-1851. doi: 10.13801/j.cnki.fhclxb.20230918.002

Pyrolysis kinetics of cabin panel materials for civil aircraft at low ambient pressure

doi: 10.13801/j.cnki.fhclxb.20230918.002
Funds:  Sichuan Province Key Laboratory Leader Announcement and Project (XYKY2023011); Key Program of Civil Aviation Flight Academy of China (ZJ2021-01)
  • Received Date: 2023-06-06
  • Accepted Date: 2023-09-09
  • Rev Recd Date: 2023-08-22
  • Available Online: 2023-09-19
  • Publish Date: 2024-04-15
  • The air transport environment is a low pressure environment, which will have a significant impact on the occurrence and development of fire. In order to explore the pyrolysis characteristics of civil aircraft cabin panel materials under low environmental pressure, the pyrolysis characteristics of civil aircraft cabin panels were studied by the thermogravimetric analyzer. Selecting the glass fiber/phenolic resin sandwich panel structure panel material (A panel) and the glass fiber/phenolic resin laminated panel structure panel material (B panel) of a certain type of Airbus aircraft as the research objects, and studied in Guanghan (96 kPa) and Kangding (61 kPa) of Sichuan province, respectively. The results show that the initial reaction temperature, termination temperature and maximum mass loss rate temperature of thermal decomposition of A and B panels move slightly to high temperature with the decrease of pressure and the increase of heating rate. At the heating rate of 15℃/min, the upper and lower resin base panel of A panel consists of two pyrolysis stages, and there is only one pyrolysis stage of aramid honeycomb core, and the initial decomposition temperature of the resin base panel is about 182℃, which is obviously lower than that of the aramid honeycomb core, while the pyrolysis temperature of B panel is divided into two stages and the initial pyrolysis temperature is about 258℃. The pyrolysis kinetics was analyzed by the Kissinger method, the Flynn-Wall-Ozawa method, the Starink method and the KAS method. The apparent activation energy obtained by the Flynn-Wall-Ozawa method, the Starink method and the KAS method is similar, and the apparent activation energy of A and B panels under low pressure increase by approximately 10.4% and 28.5% relative to that under normal pressure, respectively. And the chemical reaction rates of A panel and B panel in 96 kPa environment are about 1.9 and 1.2 times higher than that in 61 kPa environment.

     

  • loading
  • [1]
    Federal Aviation Administration. Department of transportation federal aviation administration regulations with fire: FAR 25.855[S]. Washington: Federal Aviation Administration, 2014.
    [2]
    中国民用航空局政策法规司. 中国民用航空规章 第25部 运输类飞机适航标准: CCAR 25-R4[S]. 北京: 中国民用航空局, 2011.

    Department of Policies and Regulations, Civil Aviation Administration of China. Civil aviation regulations of China: Part 25: Airworthiness standards for transport aircraft: CCAR 25-R4[S]. Beijing: Civil Aviation Administration of China, 2011(in Chinese).
    [3]
    QUANG D D, LUCHE J, RICHARD F, et al. Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8167-8178.
    [4]
    EIBL S. Influence of carbon fibre orientation on reaction-to-fire properties of polymer matrix composites[J]. Fire and Materials, 2012, 36(4): 309-324. doi: 10.1002/fam.1112
    [5]
    RÉGNIER N, FONTAINE S. Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG[J]. Journal of Thermal Analysis and Calorimetry, 2001, 64(2): 789-799.
    [6]
    张颖, 王志, 徐艳英, 等. 高强玻璃纤维复合材料热解动力学研究[J]. 消防科学与技术, 2017, 36(2): 149-152.

    ZHANG Ying, WANG Zhi, XU Yanying, et al. Study on pyrolysis kinetics of high-strength glass fiber/epoxy resin composites[J]. Fire Science and Technology, 2017, 36(2): 149-152(in Chinese).
    [7]
    朱倩, 刘全义, 马凯庆, 等. ABS材料的热解燃烧特性研究[J]. 塑料科技, 2022, 50(10): 17-22.

    ZHU Qian, LIU Quanyi, MA Kaiqing, et al. Study on pyrolytic and combustion characteristics of ABS materials[J]. Plastics Science and Technology, 2022, 50(10): 17-22(in Chinese).
    [8]
    杨扬, 徐艳英, 张旭, 等. 不同铺层方式碳纤维层合板热解动力学研究[J]. 消防科学与技术, 2018, 37(2): 167-171. doi: 10.3969/j.issn.1009-0029.2018.02.006

    YANG Yang, XU Yanying, ZHANG Xu, et al. Thermogravimetric analysis on the carbon fiber laminates with different layer structure[J]. Fire Science and Technology, 2018, 37(2): 167-171(in Chinese). doi: 10.3969/j.issn.1009-0029.2018.02.006
    [9]
    刘全义, 马凯庆, 朱倩, 等. 民航客机货舱侧壁板材料的热解特性[J]. 塑料工业, 2023, 51(1): 108-112, 136. doi: 10.3969/j.issn.1005-5770.2023.01.018

    LIU Quanyi, MA Kaiqing, ZHU Qian, et al. Study of pyrolysis characteristics of cargo hold wallpanels materials for civil aviation passenger aircraft[J]. China Plastics Industry, 2023, 51(1): 108-112, 136(in Chinese). doi: 10.3969/j.issn.1005-5770.2023.01.018
    [10]
    KIM Y S, KIM Y S, KIM K M, et al. Thermal decomposition kinetics of polymeric wastes using a nonisothermal thermogravimetric method[J]. Journal of Industrial and Engineering Chemistry, 2003, 9(3): 219-224.
    [11]
    DEMIRBAS A. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons[J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(1): 97-102. doi: 10.1016/j.jaap.2004.03.001
    [12]
    SYGUŁA E, ŚWIECHOWSKI K, HEJNA M, et al. Municipal solid waste thermal analysis—Pyrolysis kinetics and decomposition reactions[J]. Energies, 2021, 14(15): 4510. doi: 10.3390/en14154510
    [13]
    DUBDUB I, AL-YAARI M. Thermal behavior of mixed plastics at different heating rates: I. Pyrolysis kinetics[J]. Polymers, 2021, 13(19): 3413. doi: 10.3390/polym13193413
    [14]
    PATNAIK S, KUMAR S, PANDA A K. Thermal degradation of eco-friendly alternative plastics: Kinetics and thermodynamics analysis[J]. Environmental Science and Pollution Research, 2020, 27(13): 14991-15000. doi: 10.1007/s11356-020-07919-w
    [15]
    SINGH S, PRASAD CHAKRABORTY J, KUMAR MONDAL M. Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods[J]. Fuel, 2020, 259: 116263. doi: 10.1016/j.fuel.2019.116263
    [16]
    徐圣. 含磷双金属氢氧化物材料的制备及其阻燃聚丙烯性能[D]. 湘潭: 湘潭大学, 2016.

    XU Sheng. Preparation of phosphorus layered double hydroxides and their flame resistant property in polypropylene[D]. Xiangtan: Xiangtan University, 2016(in Chinese).
    [17]
    池铁, 齐会民, 黄发荣, 等. 含硅芳炔树脂的热氧化降解动力学研究[J]. 复合材料科学与工程, 2013(230): 34-38, 12. doi: 10.3969/j.issn.1003-0999.2013.02.007

    CHI Tie, QI Huimin, HUANG Farong, et al. Thermal oxiadative degradation kinetics of silicon-arylacetylene-containing resin[J]. Composites Science and Engineering, 2013(230): 34-38, 12(in Chinese). doi: 10.3969/j.issn.1003-0999.2013.02.007
    [18]
    胡炳涛, 李志健. 基于TG-FT-IR的关中麦秆热解特性及动力学研究[J]. 生物质化学工程, 2016, 50(2): 6-12. doi: 10.3969/j.issn.1673-5854.2016.02.002

    HU Bingtao, LI Zhijian. Pyrolysis characteristics and kinetics of Guanzhong wheat straw using TG-FT-IR[J]. Biomass Chemical Engineering, 2016, 50(2): 6-12(in Chinese). doi: 10.3969/j.issn.1673-5854.2016.02.002
    [19]
    段一航, 高宁博, 全翠. 水热处理对含油污泥热解特性及动力学影响[J]. 化工进展, 2023, 42(2): 603-613. doi: 10.16085/j.issn.1000-6613.2022-1208

    DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613(in Chinese). doi: 10.16085/j.issn.1000-6613.2022-1208
    [20]
    MOSQUERA M E G, JAMOND M, MARTINEZ-ALONSO A, et al. Thermal transformations of Kevlar aramid fibers during pyrolysis: Infrared and thermal analysis studies[J]. Chemistry of Materials, 1994, 6(11): 1918-1924. doi: 10.1021/cm00047a006
    [21]
    ZHENG F J, REN Z Y, XU B, et al. Elucidating multiple-scale reaction behaviors of phenolic resin pyrolysis via TG-FTIR and Reax FF molecular dynamics simulations[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105222. doi: 10.1016/j.jaap.2021.105222
    [22]
    张美云, 王茹楠, 陆赵情, 等. 对位芳纶纸热稳定性及其热分解动力学研究[J]. 中国造纸, 2016, 35(5): 6-10.

    ZHANG Meiyun, WANG Runan, LU Zhaoqing, et al. Study on the thermal stability and thermal decomposition kinetics of para-aramid paper based composite[J]. China Pulp & Paper, 2016, 35(5): 6-10(in Chinese).
    [23]
    WANG X W, HU Z M, LIU Z F. Thermal degradation of meta- and para-aramid fibers in different atmospheres[J]. International Polymer Processing, 2008, 23(1): 81-87.
    [24]
    KISSINGER H E. Reaction kinetics in the differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706. doi: 10.1021/ac60131a045
    [25]
    胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学[M]. 北京: 科学出版社, 2008.

    HU Rongzu, GAO Shengli, ZHAO Fengqi, et al. Thermal analysis kinetics[M]. Beijing: Science Press, 2008(in Chinese).
    [26]
    骆强, 曲芳, 姚志鹏, 等. 典型航空电缆的热解动力学研究[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 30-36.

    LUO Qiang, QU Fang, YAO Zhipeng, et al. Research on pyrolysis kinetics of typical aviation cable[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 30-36(in Chinese).
    [27]
    徐艳英, 张颖, 王志, 等. 典型碳纤维编织布的热解动力学[J]. 材料研究学报, 2017, 31(1): 57-64. doi: 10.11901/1005.3093.2016.158

    XU Yanying, ZHANG Ying, WANG Zhi, et al. Study on pyrolysis kinetics of typical carbon fiber bidirectional sheet[J]. Chinese Journal of Materials Research, 2017, 31(1): 57-64(in Chinese). doi: 10.11901/1005.3093.2016.158
    [28]
    CHEN R Y, XU X K, LU S X, et al. Pyrolysis study of waste phenolic fiber-reinforced plastic by thermogravimetry/Fourier transform infrared/mass spectrometry analysis[J]. Energy Conversion and Management, 2018, 165: 555-566.
    [29]
    吕雪. HMMM交联剂与两种树脂复配固化成膜条件及性能研究[D]. 重庆: 重庆大学, 2021.

    LYU Xue. Study on curing conditions and performance of film formed by cross linking agent HMMM with two resins[D]. Chongqing: Chongqing University, 2021(in Chinese).
    [30]
    李少能, 张蔚男, 吴嵘泰, 等. 生物质理化特性与热解动力学参数相关性研究[J]. 广州化工, 2022, 50(22): 138-142 doi: 10.3969/j.issn.1001-9677.2022.22.042

    LI Shaoneng, ZHANG Weinan, WU Rongtai, et al. Study on correlation between physicochemical properties and kinetic parameters of biomass pyrolysis[J]. Guangzhou Chemical Industry, 2022, 50(22): 138-142(in Chinese). doi: 10.3969/j.issn.1001-9677.2022.22.042
    [31]
    XING X, NIU X, LIU Y, et al. In-depth understanding on the early stage of phenolic resin thermal pyrolysis through ReaxFF-molecular dynamics simulation[J]. Polymer Degradation and Stability, 2021, 186: 109534.
    [32]
    陈华, 沈哲炎, 黄在青, 等. 阿伦尼乌斯方程在全钢载重子午线轮胎硫化计算中的应用研究[J]. 橡胶工业, 2021, 68(6): 409-414. doi: 10.12136/j.issn.1000-890X.2021.06.0409

    CHEN Hua, SHEN Zheyan, HUANG Zaiqing, et al. Study on application of arrhenius equation in vulcanization calculation of TBR tire[J]. China Rubber Industry, 2021, 68(6): 409-414(in Chinese). doi: 10.12136/j.issn.1000-890X.2021.06.0409
    [33]
    SAHA D, SINHA A, PATTANAYAK S, et al. Pyrolysis kinetics and thermodynamic parameters of plastic grocery bag based on thermogravimetric data using iso-conversional methods[J]. International Journal of Environmental Science and Technology, 2022, 19(1): 391-406. doi: 10.1007/s13762-020-03106-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (289) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return