Volume 41 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
SU Qiong, LU Xinyu, SHI Xiaoqin, et al. Research progress of glue-free fiberboard based on straw[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1750-1763. doi: 10.13801/j.cnki.fhclxb.20230907.002
Citation: SU Qiong, LU Xinyu, SHI Xiaoqin, et al. Research progress of glue-free fiberboard based on straw[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1750-1763. doi: 10.13801/j.cnki.fhclxb.20230907.002

Research progress of glue-free fiberboard based on straw

doi: 10.13801/j.cnki.fhclxb.20230907.002
Funds:  National Natural Science Foundation of China (21968032; 22165025); Gansu Provincial Science and Technology Program (20YF8FA045); Central Universities' Basic Scientific Research Expenses Program (31920220044; 31920230003; 31920230022; 31920230023); Northwest Minzu University Innovation Team in Chemistry Discipline (1110130139; 1110130141); Provincial First-class Professional Construction (2019SJYLZY-08); Gansu Provincial Universities Innovation and Entrepreneurship Education Reform Program (2021SJCXCYXM-01; 2021SJCXCYTD-01)
  • Received Date: 2023-06-27
  • Accepted Date: 2023-08-25
  • Rev Recd Date: 2023-08-23
  • Available Online: 2023-09-08
  • Publish Date: 2024-04-15
  • Glue-free straw-based fiberboard is a biomass composite material, which is nontoxic, degradable, recyclable and renewable. As it does not consume petroleum resources, it is conducive to sustainable development, and can replace some wood used in fields such as flooring, building materials, furniture and interior decoration. However, there is a lack of research on its board making mechanism and process, resulting in a still low market share. In this paper, the self-bonding mechanism and application status of glue-free straw-based fiberboard are summarized. The technological progress of glueless straw-based fiberboard in recent years is introduced. The effects of fiber pretreatment, fiber size and process parameters (such as pressing time, pressure and temperature) on the performances of glueless straw-based fiberboard are systematically discussed. The future prospect of glueless straw-based fiberboard in optimal design, industrial production and promotion on a large scale are put forward.

     

  • loading
  • [1]
    付敏, 陈效庆, 高泽飞, 等. 秸秆粉体利用技术及秸秆微粉碎研究现状与展望[J]. 中国农机化学报, 2023, 44(7): 91-100.

    FU Min, CHEN Xiaoqing, GAO Zefei, et al. Current status and prospect of straw powder utilization technology and straw microcrushing research[J]. Chinese Journal of Agricultural Mechanical Chemistry, 2023, 44(7): 91-100(in Chinese).
    [2]
    FERRÁNDEZ-GARCÍA A, FERRÁNDEZ-VILLENA M, FERRÁNDEZ-GARCÍA C E, et al. Potential use of Phoenix canariensis biomass in binderless particleboards at low temperature and pressure[J]. BioResources, 2017, 12(3): 6698-6712.
    [3]
    DOMÍNGUEZ-ROBLES J, TARRES Q, ALCALA M, et al. Development of high-performance binderless fiberboards from wheat straw residue[J]. Construction and Building Materials, 2020, 232: 117247. doi: 10.1016/j.conbuildmat.2019.117247
    [4]
    DUKARSKA D, CZARNECKI R, DZIURKA D, et al. Construction particleboards made from rapeseed straw glued with hybrid pMDI/PF resin[J]. European Journal of Wood and Wood Products, 2017, 75: 175-184. doi: 10.1007/s00107-016-1143-x
    [5]
    European Committee for Standardization. Particleboards-speciications: EN 312[S]. Brussels: CEN, 2005.

    European Committee for Standardization. Particleboards-speciications: EN 312[S]. Brussels: CEN, 2005.
    [6]
    MOSLEMI A, KOOHI M Z, BEHZAD T, et al. Addition of cellulose nanofibers extracted from rice straw to urea formaldehyde resin: Effect on the adhesive characteristics and medium density fiberboard properties[J]. International Journal of Adhesion and Adhesives, 2020, 99: 102582. doi: 10.1016/j.ijadhadh.2020.102582
    [7]
    玄夕娟. 蓖麻秆制造中密度纤维板的研究[D]. 南京: 南京林业大学, 2012.

    XUAN Xijuan. Research on the manufacture of medium density fiberboard from castor straw[D]. Nanjing: Nanjing Forestry University, 2012(in Chinese).
    [8]
    全国人造板标准化技术委员会. 中密度纤维板: GB/T 11718—2009[S]. 北京: 中国标准出版社, 2009.

    National Technical Committee for the Standardization of Manufactured Boards. Medium density fibreboard: GB/T 11718—2009[S]. Beijing: China Standard Press, 2009(in Chinese).
    [9]
    DUŠEK J, JERMAN M, PODLENA M, et al. Sustainable composite material based on surface-modified rape straw and environment-friendly adhesive[J]. Construction and Building Materials, 2021, 300: 124036. doi: 10.1016/j.conbuildmat.2021.124036
    [10]
    JI X, LI B, YUAN B, et al. Preparation and characterizations of a chitosan-based medium-density fiberboard adhesive with high bonding strength and water resistance[J]. Carbohydrate Polymers, 2017, 176: 273-280. doi: 10.1016/j.carbpol.2017.08.100
    [11]
    温平威. 零甲醛大豆蛋白胶粘剂粘合的稻草纤维板研制[D]. 南昌: 南昌大学, 2012.

    WEN Pingwei. Development of rice straw fiberboard bonded with zero formaldehyde soy protein adhesive[D]. Nanchang: Nanchang University, 2012(in Chinese).
    [12]
    全国人造板标准化技术委员会. 麦(稻)秸秆刨花板: GB/T 21723—2008[S]. 北京: 中国标准出版社, 2008.

    National Technical Committee for the Standardization of Artificial Boards. Wheat (rice) straw particleboard: GB/T 21723—2008[S]. Beijing: China Standard Press, 2008(in Chinese).
    [13]
    NASIR M, KHALI D P, JAWAID M, et al. Recent development in binderless fiber-board fabrication from agricultural residues: A review[J]. Construction and Building Materials, 2019, 211: 502-516. doi: 10.1016/j.conbuildmat.2019.03.279
    [14]
    TUPCIAUSKAS R, RIZHIKOVS J, BRAZDAUSKS P, et al. Influence of steam explosion pre-treatment conditions on binder-less boards from hemp shives and wheat straw[J]. Industrial Crops and Products, 2021, 170: 113717. doi: 10.1016/j.indcrop.2021.113717
    [15]
    YANG Z, SONG W, CAO Y, et al. The effect of laccase pretreatment conditions on the mechanical properties of binderless fiberboards with wheat straw[J]. BioResources, 2017, 12(2): 3707-3719.
    [16]
    肖力光, 丁艳波. 秸秆碱活化预处理对秸秆板性能影响的研究[J]. 新型建筑材料, 2021, 48(6): 124-126, 135. doi: 10.3969/j.issn.1001-702X.2021.06.026

    XIAO Liguang, DING Yanbo. Research on the effect of alkaline activation pretreatment of straw on the performance of straw board[J]. New Building Materials, 2021, 48(6): 124-126, 135(in Chinese). doi: 10.3969/j.issn.1001-702X.2021.06.026
    [17]
    WANG J, WANG B, LIU J, et al. Effect of hot-pressing temperature on characteristics of straw-based binderless fiberboards with pulping effluent[J]. Materials (Basel), 2019, 12(6): 922. doi: 10.3390/ma12060922
    [18]
    PINTIAUX T, VIET D, VANDENBOSSCHE V, et al. Binderless materials obtained by thermo-compressive processing of lignocellulosic fibers: A comprehensive review[J]. BioResources, 2015, 10(1): 1915-1963. doi: 10.15376/biores.10.1.1915-1963
    [19]
    WANG B, LI D L, CHEN T Y, et al. Understanding the mechanism of self-bonding of bamboo binderless boards: Investigating the structural changes of lignin macromolecule during the molding pressing process[J]. BioResources, 2017, 12(1): 514-532.
    [20]
    黄莉莉. 农作物秸秆板材的制备及其自胶合机理的研究[D]. 合肥: 安徽农业大学, 2016.

    HUANG Lili. Preparation of crop straw panels and study of its self-gluing mechanism[D]. Hefei: Anhui Agricultural University, 2016(in Chinese).
    [21]
    JIANG B, CHEN C, LIANG Z, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement[J]. Advanced Functional Materials, 2020, 30(4): 1906307. doi: 10.1002/adfm.201906307
    [22]
    ARÉVALO R, PEIJS T. Binderless all-cellulose fibreboard from microfibrillated lignocellulosic natural fibres[J]. Composites Part A: Applied Science and Manufacturing, 2016, 83: 38-46. doi: 10.1016/j.compositesa.2015.11.027
    [23]
    GE S, MA N L, JIANG S, et al. Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30824-30832.
    [24]
    ZHU X, HAN S, LIU Y, et al. Effects of laccase incubated from white rot fungi on the mechanical properties of fiberboard[J]. Journal of Forestry Research, 2017, 28(6): 1293-1300. doi: 10.1007/s11676-017-0398-3
    [25]
    FERRANDEZ-VILLENA M, FERRANDEZ-GARCIA C E, GARCIA-ORTUNO T, et al. The influence of processing and particle size on binderless particleboards made from Arundodonax L. rhizome[J]. Polymers (Basel), 2020, 12(3): 696. doi: 10.3390/polym12030696
    [26]
    MAHIEU A, ALIX S, LEBLANC N. Properties of particleboards made of agricultural by-products with a classical binder or self-bound[J]. Industrial Crops and Products, 2019, 130: 371-379. doi: 10.1016/j.indcrop.2018.12.094
    [27]
    SALA C M, ROBLES E, KOWALUK G. Influence of adding offcuts and trims with a recycling approach on the properties of high-density fibrous composites[J]. Polymers (Basel), 2020, 12(6): 1327. doi: 10.3390/polym12061327
    [28]
    ZHANG W, SUN H, ZHU C, et al. Mechanical and water-resistant properties of rice straw fiberboard bonded with chemically-modified soy protein adhesive[J]. RSC Advances, 2018, 8(27): 15188-15195. doi: 10.1039/C7RA12875D
    [29]
    DOMÍNGUEZ-ROBLES J, TARRES Q, DELGADO-AGUILAR M, et al. Approaching a new generation of fiberboards tang advantage of self lignin as green adhesive[J]. International Journal of Biological Macromolecules, 2018, 108: 927-935. doi: 10.1016/j.ijbiomac.2017.11.005
    [30]
    ALHARBI M A H, HIRAI S, TUAN H A, et al. Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderlesslignocellulosic biopolymers prepared by hot-pressing raw microfibrillated Phoenix dactylifera and Cocosnucifera fibers and leaves[J]. Polymer Testing, 2020, 84: 106384. doi: 10.1016/j.polymertesting.2020.106384
    [31]
    LI X, WU Y, CAI Z, et al. Primary properties of MDF using thermomechanical pulp made from oxalic acid pretreated rice straw particles[J]. Industrial Crops and Products, 2013, 41: 414-418. doi: 10.1016/j.indcrop.2012.04.039
    [32]
    RADABUTRA S, KHEMTHONG P, SAENGSUWAN S. Effect of silane coupling agent pretreatment on the properties of rice straw particleboard bonded with prevulcanized natural rubber latex[J]. Journal of Rubber Research, 2021, 24: 157-163. doi: 10.1007/s42464-021-00081-z
    [33]
    HALVARSSON S, EDLUND H, NORGREN M. Manufacture of non-resin wheat straw fibreboards[J]. Industrial Crops and Products, 2009, 29(2-3): 437-445.
    [34]
    TARRES Q, EHMAN N V, VALLEJOS M E, et al. Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties[J]. Carbohydrate Polymers, 2017, 163: 20-27. doi: 10.1016/j.carbpol.2017.01.017
    [35]
    HYSEK Š, PODLENA M, BARTSCH H, et al. Effect of wheat husk surface pre-treatment on the properties of husk-based composite materials[J]. Industrial Crops and Products, 2018, 125: 105-113. doi: 10.1016/j.indcrop.2018.08.035
    [36]
    ZAFAR M T, MAITI S N, GHOSH A K. Effect of surface treatment of jute fibers on the interfacial adhesion in poly (lactic acid)/jute fiber biocomposites[J]. Fibers and Polymers, 2016, 17 (2): 266-274. doi: 10.1007/s12221-016-5781-8
    [37]
    THENG D, ARBAT G, DELGADO-AGUILAR M, et al. Comparison between two different pretreatment technologies of rice straw fibers prior to fiberboard manufacturing: Twin-screw extrusion and digestion plus defibration[J]. Industrial Crops and Products, 2017, 107: 184-197. doi: 10.1016/j.indcrop.2017.05.049
    [38]
    RAMOS D, El MANSOURI N E, FERRANDO F, et al. All-lignocellulosic fiberboard from steam exploded Arundo donax L[J]. Molecules, 2018, 23(9): 2088. doi: 10.3390/molecules23092088
    [39]
    NGIWNGAM K, CHINVORARAT S, RACHTANAPUN P, et al. Effect of chemical and steam explosion pulping on the physical and mechanical properties of sugarcane straw pulp trays[J]. Polymers, 2023, 15(14): 3132. doi: 10.3390/polym15143132
    [40]
    UITTERHAEGEN E, LABONNE L, MERAH O, et al. Impact of thermomechanical fiber pre-treatment using twin-screw extrusion on the production and properties of renewable binderless coriander fiberboards[J]. International Journal of Molecular Sciences, 2017, 18(7): 1539.
    [41]
    JERMAN M, BOHM M, DUSEK J, et al. Effect of steaming temperature on microstructure and mechanical, hygric, and thermal properties of binderless rape straw fiberboards[J]. Building and Environment, 2022, 223: 109474. doi: 10.1016/j.buildenv.2022.109474
    [42]
    CHEN Y, DANG B, JIN C, et al. Processing lignocellulose-based composites into an ultrastrong structural material[J]. ACS Nano, 2019, 13 (1): 371-376. doi: 10.1021/acsnano.8b06409
    [43]
    LI P, ZUO Y F, WU Y Q, et al. Research progress in the manufacture and application of straw-based wood-based panels[J]. Materials Guide, 2019, 33(15): 2624-2630.
    [44]
    HAN G, DENG J, ZHANG S, et al. Effect of steam explosion treatment on characteristics of wheat straw[J]. Industrial Crops and Products, 2010, 31(1): 28-33. doi: 10.1016/j.indcrop.2009.08.003
    [45]
    ZHANG B, LI H, CHEN L, et al. Recent advances in the bioconversion of waste straw biomass with steam explosion technique: A comprehensive review[J]. Processes, 2022, 10(10): 1959. doi: 10.3390/pr10101959
    [46]
    YANG Y, SHEN H, QIU J. Bio-inspired self-bonding nanofibrillated cellulose composite: A response surface methodology for optimization of processing variables in binderless biomass materials produced from wheat-straw-lignocelluloses[J]. Industrial Crops and Products, 2020, 149: 112335. doi: 10.1016/j.indcrop.2020.112335
    [47]
    ALVAREZ C, ROJANO B, ALMAZA O, et al. Self-bonding boards from plantain fiber bundles after enzymatic treatment: Adhesion improvement of lignocellulosic products by enzymatic pre-treatment[J]. Journal of Polymers and the Environment, 2011, 19: 182-188. doi: 10.1007/s10924-010-0260-6
    [48]
    赵美云, 蒋婧. 纸质秸秆复合纤维板热压成型工艺研究[J]. 长春工程学院学报(自然科学版), 2020, 21(4): 23-26.

    ZHAO Meiyun, JIANG Jing. Research on hot pressing forming process of paper straw composite fiberboard[J]. Journal of Changchun College of Engineering (Natural Science Edition), 2020, 21(4): 23-26(in Chinese).
    [49]
    ESPINOSA E, TARRES Q, THENG D, et al. Effect of enzymatic treatment (endo-glucanases) of fiber and mechanical lignocellulose nanofibers addition on physical and mechanical properties of binderless high-density fiberboards made from wheat straw[J]. Journal of Building Engineering, 2021, 44: 103392. doi: 10.1016/j.jobe.2021.103392
    [50]
    张燕. 我国农作物秸秆板产业化发展的动因及模式研究[D]. 南京: 南京林业大学, 2011.

    ZHANG Yan. Research on the motivation and mode of industrialization of crop strawboard in China[D]. Nanjing: Nanjing Forestry University, 2011(in Chinese).
    [51]
    FAHMY T, MOBARAK F. Advanced binderless board-like green nanocomposites from undebarked cotton stalks and mechanism of self-bonding[J]. Cellulose, 2013, 20(3): 1453-1457. doi: 10.1007/s10570-013-9911-9
    [52]
    EVON P, BARTHOD-MALAT B, GRÉGOIRE M, et al. Production of fiberboards from shives collected after continuous fiber mechanical extraction from oleaginous flax[J]. Journal of Natural Fibers, 2019, 16(3): 453-469.
    [53]
    NIU Q, JI L, LI Y J, et al. Preparation method for reed fiber particle board: CN, 104227819A[P]. 2014-12-24.
    [54]
    GAO Q, LIN Q, HUANG Y, et al. High-performance wood scrimber prepared by a roller-pressing impregnation method[J]. Construction and Building Materials, 2023, 368: 130404. doi: 10.1016/j.conbuildmat.2023.130404
    [55]
    YU L H, LIU D, CHEN L H. Multi-layer hot-press device for gluing bamboo boards: CN, 201755859U[P]. 2010-08-05.
    [56]
    EL-KASSAS A M, ELSHEIKH A H. A new eco-friendly mechanical technique for production of rice straw fibers for medium density fiberboards manufacturing[J]. International Journal of Environmental Science and Technology, 2021, 18(4): 979-988.
    [57]
    Turkish Standards Institute Ankara. Fiberboards-specifications—Part 5: Requirements for dry process boards (MDF): EN 622[S]. Turkey: Turkish Standards Institute Ankara, 2008.

    Turkish Standards Institute Ankara. Fiberboards-specifications—Part 5: Requirements for dry process boards (MDF): EN 622[S]. Turkey: Turkish Standards Institute Ankara, 2008.
    [58]
    European Committee for Standardization. Particleboards and iberboards. Determination of swelling in thickness after immersion in water: EN 317[S]. Brussels: CEN, 1993.

    European Committee for Standardization. Particleboards and iberboards. Determination of swelling in thickness after immersion in water: EN 317[S]. Brussels: CEN, 1993.
    [59]
    European Committee for Standardization. Wood based panels. Determination of modulus of elasticity in bending and of bending strength: EN 310[S]. Brussels: CEN, 1993.

    European Committee for Standardization. Wood based panels. Determination of modulus of elasticity in bending and of bending strength: EN 310[S]. Brussels: CEN, 1993.
    [60]
    KUROKOCHI Y, SATO M. Properties of binderless board made from rice straw: The morphological effect of particles[J]. Industrial Crops & Products, 2015, 69: 55-59.
    [61]
    REBOLLEDO P, CLOUTIER A, YEMELEM C. Effect of density and fiber size on porosity and thermal conductivity of fiberboard mats[J]. Fibers, 2018, 6(4): 81. doi: 10.3390/fib6040081
    [62]
    SONG X, WANG X, KITO K. Effects of heating temperature on the properties of bio-board manufactured by using soybean straw[J]. Materials (Basel), 2020, 13(3): 662. doi: 10.3390/ma13030662
    [63]
    YUE X, HUANG L, HUANG L, et al. A sustainable strategy for medium-density fiberboards preparation from waste hybrid pennisetum straws[J]. Waste and Biomass Valorization, 2021, 12(6): 1-13.
    [64]
    SIHAG K, YADAV S M, LUBIS M A R, et al. Influence of needle-punching treatment and pressure on selected properties of medium density fiberboard made of bamboo (Dendrocalamus strictus Roxb. Nees)[J]. Wood Material Science & Engineering, 2022, 17(6): 712-719.
    [65]
    SAARI N, LAMAMING J, HASHIM R, et al. Optimization of binderless compressed veneer panel manufacturing process from oil palm trunk using response surface methodology[J]. Journal of Cleaner Production, 2020, 265: 121757. doi: 10.1016/j.jclepro.2020.121757
    [66]
    吴婷婷, 王秀仑, 姚天曙. 玉米秸秆生物质板材加工工艺研究[J]. 信息系统工程, 2011(2): 98-100. doi: 10.3969/j.issn.1001-2362.2011.02.036

    WU Tingting, WANG Xiulun, YAO Tianshu. Research on processing process of corn straw biomass panels[J]. Information Systems Engineering, 2011(2): 98-100(in Chinese). doi: 10.3969/j.issn.1001-2362.2011.02.036
    [67]
    ZHOU X, ZHENG F, LI H, et al. An environment-friendly thermal insulation material from cotton stalk fibers[J]. Energy and Buildings, 2010, 42(7): 1070-1074. doi: 10.1016/j.enbuild.2010.01.020
    [68]
    THENG D, ARBAT G, DELGADO-AGUILAR M, et al. Production of fiberboard from rice straw thermomechanical extrudates by thermopressing: influence of fiber morphology, water and lignin content[J]. European Journal of Wood and Wood Products, 2019, 77: 15-32. doi: 10.1007/s00107-018-1358-0
    [69]
    ZHANG K, LIU Y, GUO Z, et al. Co-modification of corn straw lignin and its enhancement on glue-free fiberboard based on freezing activated wood fibers[J]. Industrial Crops and Products, 2022, 177: 114452. doi: 10.1016/j.indcrop.2021.114452
    [70]
    KUROKOCHI Y, SATO M. Effect of surface structure, wax and silica on the properties of binderless board made from rice straw[J]. Industrial Crops and Products, 2015, 77: 949-953. doi: 10.1016/j.indcrop.2015.10.007
    [71]
    Japanese Standard Association. Particleboards: JIS A5908—2003[S]. Tokyo: Japanese Standards Association, 2003.

    Japanese Standard Association. Particleboards: JIS A5908—2003[S]. Tokyo: Japanese Standards Association, 2003.
    [72]
    Japanese Standard Association. Fiberboards: JIS A5905—2014[S]. Tokyo: Japanese Standards Association, 2014.

    Japanese Standard Association. Fiberboards: JIS A5905—2014[S]. Tokyo: Japanese Standards Association, 2014.
    [73]
    ALI M, ALABDULKAREM A, NUHAIT A, et al. Characteristics of agro waste fibers as new thermal insulation and sound absorbing materials: Hybrid of date palm tree leaves and wheat straw fibers[J]. Journal of Natural Fibers, 2022, 19(13): 6576-6594. doi: 10.1080/15440478.2021.1929647
    [74]
    ZHANG S. Study on the preparation process of rice straw fiberboard for packaging[J]. IOP Conference Series Earth and Environmental Science, 2019, 233: 052031. doi: 10.1088/1755-1315/233/5/052031
    [75]
    LUTHFI N, WANG X, KITO K, et al. Effect of drying temperature on the mechanical properties of binderless fiberboard from bagasse: Study of flexural and tensile strength[J]. JIIF (Jurnal Ilmu dan Inovasi Fisika), 2020, 4(2): 86-94. doi: 10.24198/jiif.v4i2.28412
    [76]
    VITRONE F, RAMOS D, VITAGLIANO V, et al. All-lignocellulosic fiberboards from giant reed (Arundo donax L): Effect of steam explosion pre-treatment on physical and mechanical properties[J]. Construction and Building Materials, 2022, 319: 126064. doi: 10.1016/j.conbuildmat.2021.126064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (366) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return