Volume 41 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
YAO Lu, HE Wentao, MA Yan, et al. Research on impact behavior of CFRP aluminum alloy adhesive plate based on multiscale damage mechanism[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2167-2179. doi: 10.13801/j.cnki.fhclxb.20230904.001
Citation: YAO Lu, HE Wentao, MA Yan, et al. Research on impact behavior of CFRP aluminum alloy adhesive plate based on multiscale damage mechanism[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2167-2179. doi: 10.13801/j.cnki.fhclxb.20230904.001

Research on impact behavior of CFRP aluminum alloy adhesive plate based on multiscale damage mechanism

doi: 10.13801/j.cnki.fhclxb.20230904.001
Funds:  National Natural Science Foundation of China (52071308; 51879248; 52105153); Natural Science Foundation of Jiangsu Province under Grants (BK20221378); Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grants (21KJB570009); In Part by Projects from Nantong Science and Technology Bureau (MS22022103)
  • Received Date: 2023-06-27
  • Accepted Date: 2023-08-16
  • Rev Recd Date: 2023-07-30
  • Available Online: 2023-09-04
  • Publish Date: 2024-04-15
  • Carbon fiber reinforced polymer (CFRP) aluminum alloy adhesive plate is a lightweight and high-strength material, which has been widely applied in lightweight structures, such as airplanes, cars, and high-speed trains. This research first established an representative volume element (RVE) single cell model based on the microscale from fiber/matrix, predicted the elastic mechanical parameters of unidirectional CFRP, and calculated the macro-micro stress amplification coefficient by applying a macroscopic unit load to the RVE model. Secondly, considering the micro-failure criteria and evolution rules of fiber and matrix, the macro-micro progressive damage evolution program of CFRP unidirectional plates was developed. Then combining with the damage model of metal and adhesive interface, a multiscale damage mechanism impacted model of CFRP aluminum alloy adhesive plate was established, then the accuracy and reliability of the numerical model were verified through the experimental tests. Finally, based on the numerical simulation, the influences of fiber angle and fiber volume fraction on the impact behavior of CFRP aluminum alloy adhesive plate were studied in detail. The results show that the fiber layup direction has little effect on the impact mechanical performance of the adhesive plate, while the fiber volume fraction has a greater effect on the impact behavior of the structure.

     

  • loading
  • [1]
    陶杰, 李华冠, 潘蕾, 等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报, 2015, 47(5):626-636.

    TAO Jie, LI Huaguan, PAN Lei, et al. Review on research and development of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics and Astronautics,2015,47(5):626-636(in Chinese).
    [2]
    HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications[J]. Composites Part B: Engineering,2020,181:107496. doi: 10.1016/j.compositesb.2019.107496
    [3]
    SUN G Y, CHEN D D, ZHU G H, et al. Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook[J]. Thin-Walled Structures,2022,172:108760. doi: 10.1016/j.tws.2021.108760
    [4]
    HE W T, WANG C Z, WANG S Q, et al. Characterizing and predicting the tensile mechanical behavior and failure mechanisms of notched FMLs-combined with DIC and numerical techniques[J]. Composite Structures,2020,254:112893. doi: 10.1016/j.compstruct.2020.112893
    [5]
    YAO L, MAO L Z, WANG Y C, et al. In-situ damage monitoring and numerical characterization of three-point bending and incremental cycle flexural behavior of FMLs[J]. Mechanics of Advanced Materials and Structures,2023:1-19. doi: 10.1080/15376494.2023.2204095
    [6]
    ZOPP C, DITTES A, NESTLER D, et al. Quasi-static and fatigue bending behavior of a continuous fiber-reinforced thermoplastic/metal laminate[J]. Composites Part B: Engineering,2019,174:107043. doi: 10.1016/j.compositesb.2019.107043
    [7]
    HE W T, WANG L F, LIU H C, et al. On impact behavior of fiber metal laminate (FML) structures: A state-of-the-art review[J]. Thin-Walled Structures,2021,167:108026. doi: 10.1016/j.tws.2021.108026
    [8]
    YU G C, WU L Z, MA L, et al. Low velocity impact of carbon fiber aluminum laminates[J]. Composite Structures,2015,119:757-766. doi: 10.1016/j.compstruct.2014.09.054
    [9]
    YANG L, WU Z J, GAO D Y, et al. Microscopic damage mechanisms of fibre reinforced composite laminates subjected to low velocity impact[J]. Computational Materials Science,2016,111:148-156. doi: 10.1016/j.commatsci.2015.09.039
    [10]
    QI Z C, LIU Y, CHEN W L. An approach to predict the mechanical properties of CFRP based on cross-scale simulation[J]. Composite Structures,2019,210:339-347. doi: 10.1016/j.compstruct.2018.11.056
    [11]
    GE L, LI H M, LIU B S, et al. Multi-scale elastic property prediction of 3D five-directional braided composites considering pore defects[J]. Composite Structures,2020,244:112287. doi: 10.1016/j.compstruct.2020.112287
    [12]
    GHOLAMI M, AFRASIAB H, BAGHESTANI A M, et al. A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials[J]. Composites Science and Technology,2022,217:109120. doi: 10.1016/j.compscitech.2021.109120
    [13]
    王猛. 碳纤维增强复合材料宏-细-微观损伤失效研究[D]. 南京: 东南大学, 2020.

    WANG Meng. Damage and failure analysis of carbon fiber reinforced composites across macro-meso-micro scales[D]. Nanjing: Southeast University, 2020(in Chinese).
    [14]
    WANG M, HANG X C. Modified micro-mechanics based multiscale model for damage analysis of open-hole composite laminates under compression[J]. Materials,2022,15(15):5105. doi: 10.3390/ma15155105
    [15]
    蒋宏勇. CFRP薄壁结构耐撞性与失效机理研究[D]. 长沙: 湖南大学, 2021.

    JIANG Hongyong. Research on crashworthiness and failure mechanisms of carbon-fiber reinforced polymer composite thin-walled structures[D]. Changsha: Hunan University, 2021(in Chinese).
    [16]
    HA S K, JIN K K, HUANG Y C. Micro-mechanics of failure (MMF) for continuous fiber reinforced composites[J]. Journal of Composite Materials,2008,42(18):1873-1895. doi: 10.1177/0021998308093911
    [17]
    LIAO B B, TAN H C, ZHOU J W, et al. Multi-scale modelling of dynamic progressive failure in composite laminates subjected to low velocity impact[J]. Thin-Walled Structures,2018,131:695-707. doi: 10.1016/j.tws.2018.07.047
    [18]
    LOU X F, CAI H N, YU P F, et al. Failure analysis of composite laminate under low-velocity impact based on micromechanics of failure[J]. Composite Structures,2017,163:238-247. doi: 10.1016/j.compstruct.2016.12.030
    [19]
    ASTM. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M—12[S]. West Conshohocken: ASTM International, 2012.
    [20]
    XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures,2003,40(8):1907-1921. doi: 10.1016/S0020-7683(03)00024-6
    [21]
    李星, 关志东, 刘璐, 等. 复合材料跨尺度失效准则及其损伤演化[J]. 复合材料学报, 2013, 30(2):152-158.

    LI Xing, GUAN Zhidong, LIU Lu, et al. Composite multiscale failure criteria and damage evolution[J]. Acta Materiae Compositae Sinica,2013,30(2):152-158(in Chinese).
    [22]
    刘勇. 面向CFRP钻削的跨尺度数值模拟技术研究[D]. 南京: 南京航空航天大学, 2020.

    LIU Yong. Research on scale-span numerical simulation techniques for CFRP drilling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
    [23]
    JIN K K, HUANG Y C, LEE Y H, et al. Distribution of micro stresses and interfacial tractions in unidirectional composites[J]. Journal of Composite Materials,2008,42(18):1825-1849. doi: 10.1177/0021998308093909
    [24]
    朱国华, 竺森森, 胡珀, 等. CFRP薄壁结构多尺度建模及耐撞性分析[J]. 复合材料学报, 2023, 40(6):3626-3639.

    ZHU Guohua, ZHU Sensen, HU Po, et al. Multi-scale modeling and crashworthiness analysis of CFRP thin-walled structures[J]. Acta Materiae Compositae Sinica,2023,40(6):3626-3639(in Chinese).
    [25]
    YAO L, YU H, WANG C Z, et al. Numerical and experimental investigation on the oblique successive impact behavior and accumulated damage characteristics of fiber metal laminates[J]. Thin-Walled Structures,2021,166:108033. doi: 10.1016/j.tws.2021.108033
    [26]
    YAO L, WANG C Z, HE W T, et al. Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches[J]. Thin-Walled Structures,2019,145:106399. doi: 10.1016/j.tws.2019.106399
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(6)

    Article Metrics

    Article views (352) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return