Volume 41 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
QING Da, WANG Jiansheng, SU Xinyue, et al. Preparation of BaTiO3/SrTiO3 composite film and its photoelectrochemical cathodic protection performance[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1945-1953. doi: 10.13801/j.cnki.fhclxb.20230817.003
Citation: QING Da, WANG Jiansheng, SU Xinyue, et al. Preparation of BaTiO3/SrTiO3 composite film and its photoelectrochemical cathodic protection performance[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1945-1953. doi: 10.13801/j.cnki.fhclxb.20230817.003

Preparation of BaTiO3/SrTiO3 composite film and its photoelectrochemical cathodic protection performance

doi: 10.13801/j.cnki.fhclxb.20230817.003
Funds:  Natural Science Foundation—Steel and Iron Foundation of Hebei Province (E2021209002); Tangshan Science and Technology Bureau Project (21130211D; 22130215H)
  • Received Date: 2023-05-30
  • Accepted Date: 2023-08-03
  • Rev Recd Date: 2023-07-28
  • Available Online: 2023-08-18
  • Publish Date: 2024-04-15
  • Improving the separation efficiency of photogenerated carriers is an effective way to improve the protection performance of photoelectrochemical cathode. In order to make up for the shortcomings of SrTiO3, such as large band gap and low separation efficiency of photogenerated carriers, BaTiO3/SrTiO3 composite films were prepared on fluorine-doped tin oxide conductive glass (FTO) by two-step ultrasonic spray pyrolysis process. The phase composition, surface morphology and optical properties of the samples were observed by XRD, SEM, UV-vis DRS and PL. Then, 304 stainless steel (304 SS) was used as the protected metal, and the photoelectrochemical cathodic protection performance of BaTiO3/SrTiO3 composite film was observed under the condition of shading light. The relative position of BaTiO3/SrTiO3 is determined by Mott-Schottky curve. The results show that the light absorption range of BaTiO3/SrTiO3 composite films prepared by two-step ultrasonic spray pyrolysis process is broadened to 400 nm. Compared with SrTiO3 film, BaTiO3/SrTiO3 composite film has better light absorption performance. The separation efficiency of photo-generated carriers is improved. In 3.5wt%NaCl solution, BaTiO3/SrTiO3 composite film negatively shifts the open circuit potential of 304 SS to −0.38 V, with a negative shift degree of about 230 mV, while pure SrTiO3 film can only negatively shift by 100 mV. The performance improvement is mainly attributed to the heterojunction formed by BaTiO3 and SrTiO3, which promotes the separation of photogenerated carriers.

     

  • loading
  • [1]
    侯世忠. 阴极保护技术的研究与应用[J]. 全面腐蚀控制, 2018, 32(10):39-44, 65.

    HOU Shizhong. Research and application of cathodic protection technology[J]. Total Corrosion Control,2018,32(10):39-44, 65(in Chinese).
    [2]
    施云芬, 孙树森, 张世龙, 等. 牺牲阳极和外加电流联合保护法在长输管道中的应用研究[J]. 表面技术, 2019, 48(8):286-295.

    SHI Yunfen, SUN Shusen, ZHANG Shilong, et al. Application of combined protection of sacrificial anode and applied current in buried pipeline[J]. Surface Technology,2019,48(8):286-295(in Chinese).
    [3]
    王坚. 在役海港工程钢管桩的牺牲阳极阴极保护效果分析与研究[J]. 中国水运, 2021, 21(6):100-101.

    WANG Jian. Analysis and research on the effect of sacrificial anode cathodic protection for steel pipe piles in service harbor engineering[J]. China Water Transport,2021,21(6):100-101(in Chinese).
    [4]
    彭宇. 牺牲阳极的阴极保护法在电力系统接地体防腐中的应用[J]. 能源与节能, 2020, 174(3):191-192.

    PENG Yu. Application of cathodic protection method of sacrificial anode in the anti-corrosion of grounding body in power system[J]. Energy and Energy Conservation,2020,174(3):191-192(in Chinese).
    [5]
    江锋, 刘蔚伟, 马韦刚. 某核电厂滤网用铝合金牺牲阳极的失效原因[J]. 腐蚀与防护, 2023, 44(1):75-78, 82.

    JIANG Feng, LIU Weiwei, MA Weigang. Failure reason of aluminum alloy sacrificial anodes for screen in a nuclear power plant [J]. Corrosion and Protection, 2023, 44(1): 75-78, 82(in Chinese).
    [6]
    杜鹏, 刘欣, 郜友彬, 等. 酸性土壤中接地网牺牲阳极阴极保护法研究[J]. 表面技术, 2015, 44(10):111-116. doi: 10.16490/j.cnki.issn.1001-3660.2015.10.019

    DU Peng, LIU Xin, GAO Youbin, et al. Galvanic anode cathodic protection of grounding grid in acidic soils[J]. Surface Technology,2015,44(10):111-116(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2015.10.019
    [7]
    周正, 马酉生. 混凝土中钢筋防腐的阴极保护法[J]. 混凝土与水泥制品, 1985(2):19-25.

    ZHOU Zheng, MA Yousheng. Cathodic protection method for corrosion protection of steel bars in concrete[J]. Concrete and Cement Products,1985(2):19-25(in Chinese).
    [8]
    孙荆茶, 唐巧玲, 李国晋. 接地装置电化学腐蚀原理及阴极保护法的应用[J]. 数字技术与应用, 2010(4):127-128.

    SUN Jingcha, TANG Qiaoling, LI Guojin. Electrochemical corrosion principle of grounding device and application of cathodic protection method[J]. Digital Technology & Application,2010(4):127-128(in Chinese).
    [9]
    李波, 何锦航, 余思伍, 等. TiO2/GO/EP复合涂层的光电化学防腐蚀性能研究[J]. 涂料工业, 2023, 53(1):22-29, 36. doi: 10.12020/j.issn.0253-4312.2022-194

    LI Bo, HE Jinhang, YU Siwu, et al. Study on photoelectrochemical corrosion protection performance of TiO2/GO/EP composite coating[J]. Paint & Coatings Industry,2023,53(1):22-29, 36(in Chinese). doi: 10.12020/j.issn.0253-4312.2022-194
    [10]
    王霞, 官自超, 时海燕, 等. Bi2S3/CdSe共修饰TiO2纳米管膜的构建及其光电化学阴极保护效应[J]. 无机化学学报, 2022, 38(5):861-872.

    WANG Xia, GUAN Zichao, SHI Haiyan, et al. Fabrication and photoelectrochemical cathodic protection effect of Bi2S3/CdSe co-modified TiO2 nanotube film[J]. Chinese Journal of Inorganic Chemistry,2022,38(5):861-872(in Chinese).
    [11]
    苏新悦, 孔存辉, 庆达, 等. Ti3C2/SrTiO3 复合材料的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2023, 40(7):3964-3972.

    SU Xinyue, KONG Cunhui, QING Da, et al. Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica,2023,40(7):3964-3972(in Chinese).
    [12]
    许进博, 董晓珠, 赵英娜, 等. 钛酸锶光电化学阴极保护材料研究进展[J]. 中国陶瓷, 2021, 57(2):1-6.

    XU Jinbo, DONG Xiaozhu, ZHAO Yingna, et al. Research progress of SrTiO3 for photoelectrochemical cathodic protection materials[J]. China Ceramics,2021,57(2):1-6(in Chinese).
    [13]
    KONG C H, SU X Y, QING D, et al. Controlled synthesis of various SrTiO3 morphologies and their effects on photoelectrochemical cathodic protection performance[J]. Ceramics International,2022,48(14):20228-20236. doi: 10.1016/j.ceramint.2022.03.302
    [14]
    KONG L N, TANG X X, DU X R, et al. Surface engineering of TiO2@SrTiO3 heterojunction with Ni2S3 for efficient visible-light-driven photoelectrochemical cathodic protection[J]. Journal of Alloys and Compounds,2022,927:166861. doi: 10.1016/j.jallcom.2022.166861
    [15]
    苏新悦, 王建省, 赵英娜, 等. 二维Ti3C2修饰WO3/SrTiO3异质结复合材料及其光电化学阴极保护性能[J]. 复合材料学报, 2024, 41(3): 1342-1350.

    SU Xinyue, WANG Jiansheng, ZHAO Yingna, et al. Two-dimensional Ti3C2-modified WO3/SrTiO3 heterojunction composites and their photoelectrochemical cathodic protection performance[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1342-1350(in Chinese).
    [16]
    OHKO Y, SAITOH S, TATSUMA T, et al. Photoelectrochemical anticorrosion effect of SrTiO3 for carbon steel[J]. Electrochemical and Solid-State Letters, 2002, 5(2): B9-B12.
    [17]
    ZHU Y F, XU L, HU J, et al. Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel[J]. Electrochimica Acta,2014,121:361-368. doi: 10.1016/j.electacta.2013.12.178
    [18]
    YANG Y, CHENG Y F. Bi-layered CeO2/SrTiO3 nanocomposite photoelectrode for energy storage and photocathodic protection[J]. Electrochimica Acta,2017,253:134-141. doi: 10.1016/j.electacta.2017.09.044
    [19]
    GUAN Z C, HU J, WANG H H, et al. Decoration of rutile TiO2 nanorod film with g-C3N4/SrTiO3 for efficient photoelectrochemical cathodic protection[J]. Journal of Photochemistry and Photobiology A: Chemistry,2023,443:114825. doi: 10.1016/j.jphotochem.2023.114825
    [20]
    KONG C H, QING D, SU X Y, et al. Improved photoelectrochemical cathodic protection properties of a flower-like SrTiO3 photoanode decorated with g-C3N4[J]. Journal of Alloys and Compounds,2022,924:166629. doi: 10.1016/j.jallcom.2022.166629
    [21]
    WU Y, WEI Y L, GUO Q Y, et al. Solvothermal fabrication of La-WO3/SrTiO3 heterojunction with high photocatalytic performance under visible light irradiation[J]. Solar Energy Materials and Solar Cells,2018,176:230-238. doi: 10.1016/j.solmat.2017.12.005
    [22]
    ZHOU H, WANG H Q, ZHENG J C, et al. In situ study of the electronic structure of polar-to-polar SrTiO3/($\scriptstyle 000\bar 1 $) ZnO heterointerface[J]. Results in Physics,2021,30:104827. doi: 10.1016/j.rinp.2021.104827
    [23]
    BU Y Y, CHEN Z Y, AO J P, et al. Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3-TiO2 composite [J]. Journal of Alloys and Compounds, 2018, 731: 1214-1224.
    [24]
    CHOI H Y, JEON J D, KIM S E, et al. Strained BaTiO3 thin films via in-situ crystallization using atomic layer deposition on SrTiO3 substrate[J]. Materials Science in Semiconductor Processing,2023,160:107442. doi: 10.1016/j.mssp.2023.107442
    [25]
    DIAO C L, LIU H X, HAO H, et al. Dielectric, ferroelectric properties and photoconductivity effect of sol-gel grown SrTiO3/BaTiO3 thin film heterostructure[J]. Ceramics International,2018,44(11):12157-12161. doi: 10.1016/j.ceramint.2018.03.265
    [26]
    KIM Y G, KIM H, LEE G J, et al. Flexoelectric-boosted piezoelectricity of BaTiO3@SrTiO3 core-shell nanostructure determined by multiscale simulations for flexible energy harvesters[J]. Nano Energy,2021,89:106469. doi: 10.1016/j.nanoen.2021.106469
    [27]
    PAN R K, HE Y B, LI M K, et al. Resistive switching in epitaxial BaTiO3 films grown on Nb-doped SrTiO3 by PLD[J]. Materials Science and Engineering: B,2014,188:84-88. doi: 10.1016/j.mseb.2014.06.012
    [28]
    LIU X T, SHEN X F, SA B S, et al. Piezotronic-enhanced photocatalytic performance of heterostructured BaTiO3/SrTiO3 nanofibers[J]. Nano Energy,2021,89:106391. doi: 10.1016/j.nanoen.2021.106391
    [29]
    ABRAHAM P, SHAJI S, AVELLANEDA D A, et al. Sb2S3 thin films: From first principles to in situ crystalline thin film growth by ultrasonic spray pyrolysis[J]. Materials Science in Semiconductor Processing,2023,156:107269. doi: 10.1016/j.mssp.2022.107269
    [30]
    LI T T, ZHOU Q Q, QIAN J J, et al. Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with α-Fe2O3 photoanode[J]. Electrochimica Acta,2019,307:92-99. doi: 10.1016/j.electacta.2019.03.183
    [31]
    JING J P, CHEN Z Y, BU Y Y, et al. Significantly enhanced photoelectrochemical cathodic protection performance of hydrogen treated Cr-doped SrTiO3 by Cr6+ reduction and oxygen vacancy modification[J]. Electrochimica Acta,2019,304:386-395. doi: 10.1016/j.electacta.2019.03.020
    [32]
    许进博, 董晓珠, 孔存辉, 等. SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2022, 39(8):3922-3928.

    XU Jinbo, DONG Xiaozhu, KONG Cunhui, et al. Preparation of SrTiO3/TiO2 composite film for photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica,2022,39(8):3922-3928(in Chinese).
    [33]
    LIU X Y, LIU L, ZHANG Y M, et al. Glutathione-sensitized SnS2 nanoflake/CdS nanorod heterojunction for enhancing cathodic protection of 304 stainless steel with remarkable photoelectric conversion performance[J]. Applied Surface Science,2023,637:157835. doi: 10.1016/j.apsusc.2023.157835
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (315) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return