Volume 41 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
WANG Lukai, MEN Jing, FENG Junzong, et al. Direct-write 3D printing of polyimide-silica aerogel composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1879-1889. doi: 10.13801/j.cnki.fhclxb.20230726.001
Citation: WANG Lukai, MEN Jing, FENG Junzong, et al. Direct-write 3D printing of polyimide-silica aerogel composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1879-1889. doi: 10.13801/j.cnki.fhclxb.20230726.001

Direct-write 3D printing of polyimide-silica aerogel composites

doi: 10.13801/j.cnki.fhclxb.20230726.001
Funds:  Hunan Provincial Natural Science Foundation of China (2023JJ30632)
  • Received Date: 2023-06-09
  • Accepted Date: 2023-07-13
  • Rev Recd Date: 2023-07-04
  • Available Online: 2023-07-26
  • Publish Date: 2024-04-15
  • The specific geometry has a crucial impact on the function of aerogel materials in application scenarios. However, conventional manufacturing technology remains challenging in the customized shaping of aerogels due to the fragility of aerogels, time-consuming manufacturing cycles, and poor designability of molds. Direct-write 3D printing technology has been applied to achieve the on-demand shaping of aerogels, imparting aerogels with compatible material composition and functional characteristics. In this work, a direct-write 3D printing strategy based on dual-channel intermixing extrusion was proposed to prepare polyimide-silica (OBS) aerogel composites. Benefiting from the efficient fluid diffusion intermixing between inks and catalysts during extrusion processes, chemical imidization solidification can be successfully achieved, and 3D-printed OBS aerogel composites show high structural integrity and high shape fidelity. Depending on the advantages of the spatial assembly of direct-write 3D printing technology, OBS aerogel composites have formed multi-scale morphologies of millimeters, micrometers, and nanometers. In micron scale, the composite structure enables 3D-printed OBS aerogel composites to display excellent mechanical properties (Young's modulus up to 14.4 MPa). Meanwhile, nanoscale pore structure features, such as low density (0.208 g·cm−3), high surface area (373 m2·g−1), and concentrated poren diameter distribution (20-30 nm), impart 3D-printed OBS aerogel composites with excellent thermal insulation performance (thermal conductivity as low as 21.25 mW·m−1·K−1). Although our work only focuses on OBS aerogel composites, the successful implementation of this 3D printing strategy would provide guidelines for additive manufacturing of other aerogel composites.

     

  • loading
  • [1]
    GURAV J L, JUNG I K, PARK H H, et al. Silica aerogel: Synthesis and applications[J]. Journal of Nanomaterials,2010,2010:409310. doi: 10.1155/2010/409310
    [2]
    KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature,1931,127(3211):741. doi: 10.1038/127741a0
    [3]
    SOLEIMANI DORCHEH A, ABBASI M H. Silica aerogel: Synthesis, properties and characterization[J]. Journal of Materials Processing Technology,2008,199(1-3):10-26. doi: 10.1016/j.jmatprotec.2007.10.060
    [4]
    LINHARES T, PESSOA DE AMORIM M T, DURÃES L. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications[J]. Journal of Materials Chemistry A,2019,7(40):22768-22802. doi: 10.1039/C9TA04811A
    [5]
    LI C D, CHEN Z F, DONG W F, et al. A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure[J]. Journal of Non-Crystalline Solids,2021,553:120517. doi: 10.1016/j.jnoncrysol.2020.120517
    [6]
    张明. 增强改性SiO2气凝胶复合材料的研究进展[J]. 复合材料学报, 2020, 37(11):2674-2683.

    ZHANG Ming. Research progress of reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica,2020,37(11):2674-2683(in Chinese).
    [7]
    HASAN M A, SANGASHETTY R, ESTHER A M, et al. Prospect of thermal insulation by silica aerogel: A brief review[J]. Journal of the Institution of Engineers (India): Series D,2017,98(2):297-304. doi: 10.1007/s40033-017-0136-1
    [8]
    GRONAUER M, FRICKE J. Acoustic properties of microporous SiO2 aerogel[J]. Acta Acustica United with Acustica,1986,59(3):177-181.
    [9]
    DÍAZ D D, KÜHBECK D, KOOPMANS R J. Stimuli-responsive gels as reaction vessels and reusable catalysts[J]. Chemical Society Reviews,2011,40(1):427-448. doi: 10.1039/C005401C
    [10]
    TABATA M, ADACHI I, KAWAI H, et al. Recent progress in silica aerogel Cherenkov radiator[J]. Physics Procedia,2012,37:642-649. doi: 10.1016/j.phpro.2012.02.410
    [11]
    AYERS M R, HUNT A J. Visibly photoluminescent silica aerogels[J]. Journal of Non-Crystalline Solids,1997,217(2-3):229-235. doi: 10.1016/S0022-3093(97)00126-9
    [12]
    JI X F, DU Y, ZHANG X T. Elaborate size-tuning of silica aerogel building blocks enables laser-driven lighting[J]. Advanced Materials,2022,34(6):2107168. doi: 10.1002/adma.202107168
    [13]
    BASKARAN S, LIU J, DOMANSKY K, et al. Low dielectric constant mesoporous silica films through molecularly templated synthesis[J]. Advanced Materials,2000,12(4):291-294. doi: 10.1002/(SICI)1521-4095(200002)12:4<291::AID-ADMA291>3.0.CO;2-P
    [14]
    MALEKI H, DURÃES L, PORTUGAL A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non-Crystalline Solids, 2014, 385: 55-74.
    [15]
    ISWAR S, MALFAIT W J, BALOG S, et al. Effect of aging on silica aerogel properties[J]. Microporous and Mesoporous Materials,2017,241:293-302. doi: 10.1016/j.micromeso.2016.11.037
    [16]
    王鲁凯. 双交联聚有机硅氧烷气凝胶的制备及其性能研究[D]. 长沙: 国防科技大学, 2019.

    WANG Lukai. Synthesis and properties of doubly cross-linked polyorganosiloxane aerogels[D]. Changsha: National University of Defense Technology, 2019(in Chinese).
    [17]
    AKHTER F, SOOMRO S A, INGLEZAKIS V J. Silica aerogels: A review of synthesis, applications and fabrication of hybrid composites[J]. Journal of Porous Materials,2021,28(5):1387-1400. doi: 10.1007/s10934-021-01091-3
    [18]
    ŚLOSARCZYK A. Recent advances in research on the synthetic fiber based silica aerogel nanocomposites[J]. Nanomaterials,2017,7(2):44. doi: 10.3390/nano7020044
    [19]
    WANG L K, FENG J Z, JIANG Y G, et al. Elastic methyltrimethoxysilane based silica aerogels reinforced with polyvinylmethyldimethoxysilane[J]. RSC Advances,2019,9(19):10948-10957. doi: 10.1039/C9RA00970A
    [20]
    MALEKI H, DURÃES L, PORTUGAL A. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications[J]. Microporous and Mesoporous Materials,2014,197:116-129. doi: 10.1016/j.micromeso.2014.06.003
    [21]
    LEE K Y, MAHADIK D B, PARALE V G, et al. Composites of silica aerogels with organics: A review of synthesis and mechanical properties[J]. Journal of the Korean Ceramic Society,2020,57(1):1-23. doi: 10.1007/s43207-019-00002-2
    [22]
    王鲁凯, 冯军宗, 李良军, 等. 疏水改性聚酰亚胺的研究进展[J]. 材料导报, 2018, 32(S2):264-269.

    WANG Lukai, FENG Junzong, LI Liangjun, et al. Research progress on hydrophobic modification of polyimide[J]. Materials Reports,2018,32(S2):264-269(in Chinese).
    [23]
    LIAW D J, WANG K L, HUANG Y C, et al. Advanced polyimide materials: Syntheses, physical properties and applications[J]. Progress in Polymer Science,2012,37(7):907-974. doi: 10.1016/j.progpolymsci.2012.02.005
    [24]
    罗伟, 王林生, 陈裕欣, 等. 有机-无机复合气凝胶的制备及其阻燃性能研究进展[J]. 复合材料学报, 2021, 38(7):2056-2069. doi: 10.13801/j.cnki.fhclxb.20210324.002

    LUO Wei, WANG Linsheng, CHEN Yuxin, et al. Research progress on preparation and flame retardant properties of organic-inorganic composite aerogel[J]. Acta Materiae Compositae Sinica,2021,38(7):2056-2069(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210324.002
    [25]
    费志方, 杨自春, 李昆锋, 等. 疏水性聚酰亚胺增强SiO2气凝胶复合材料的制备与表征[J]. 复合材料学报, 2018, 35(9):2566-2572.

    FEI Zhifang, YANG Zichun, LI Kunfeng, et al. Preparation and characterization of hydrophobic polyimide reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica,2018,35(9):2566-2572(in Chinese).
    [26]
    KANTOR Z, WU T T, ZENG Z H, et al. Heterogeneous silica-polyimide aerogel-in-aerogel nanocomposites[J]. Chemical Engineering Journal,2022,443:136401. doi: 10.1016/j.cej.2022.136401
    [27]
    王鲁凯, 冯军宗, 姜勇刚, 等. 直写3D打印陶瓷基多孔结构的研究进展[J]. 无机材料学报, 2023, 38(10): 1133-1148.

    WANG Lukai, FENG Junzong, JIANG Yonggang, et al. Direct-ink-writing 3D printing of ceramic-based porous structures: A review[J]. Journal of Inorganic Materials, 2023, 38(10): 1133-1148(in Chinese).
    [28]
    WAN X E, LUO L, LIU Y J, et al. Direct ink writing based 4D printing of materials and their applications[J]. Advanced Science,2020,7(16):2001000. doi: 10.1002/advs.202001000
    [29]
    SAADI M A S R, MAGUIRE A, POTTACKAL N T, et al. Direct ink writing: A 3D printing technology for diverse materials[J]. Advanced Materials,2022,34(28):2108855. doi: 10.1002/adma.202108855
    [30]
    FENG J Z, SU B L, XIA H S, et al. Printed aerogels: Chemistry, processing, and applications[J]. Chemical Society Reviews,2021,50(6):3842-3888. doi: 10.1039/C9CS00757A
    [31]
    WANG L K, FENG J Z, LUO Y, et al. Versatile thermal-solidifying direct-write assembly towards heat-resistant 3D-printed ceramic aerogels for thermal insulation[J]. Small Methods, 2022, 6(5): 2200045.
    [32]
    WANG L K, FENG J Z, JIANG Y G, et al. Ultraviolet-assisted direct-write printing strategy towards polyorganosiloxane-based aerogels with freeform geometry and outstanding thermal insulation performance[J]. Chemical Engineering Journal, 2023, 455: 140818.
    [33]
    WANG L K, FENG J Z, LUO Y, et al. Three-dimensional-printed silica aerogels for thermal insulation by directly writing temperature-induced solidifiable inks[J]. ACS Applied Materials & Interfaces,2021,13(34):40964-40975.
    [34]
    YUN S, LUO H J, GAO Y F. Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity[J]. Journal of Materials Chemistry A,2014,2(35):14542-14549. doi: 10.1039/C4TA02195A
    [35]
    NOTARIO B, PINTO J, SOLORZANO E, et al. Experimental validation of the Knudsen effect in nanocellular polymeric foams[J]. Polymer,2015,56:57-67. doi: 10.1016/j.polymer.2014.10.006
    [36]
    ZU G Q, KANAMORI K, SHIMIZU T, et al. Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators[J]. Chemistry of Materials,2018,30(8):2759-2770. doi: 10.1021/acs.chemmater.8b00563
    [37]
    KIM J, KWON J, KIM M, et al. Low-dielectric-constant polyimide aerogel composite films with low water uptake[J]. Polymer Journal,2016,48(7):829-834. doi: 10.1038/pj.2016.37
    [38]
    GUO H Q, MEADOR M A B, MCCORKLE L, et al. Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength[J]. ACS Applied Materials & Interfaces,2012,4(10):5422-5429.
    [39]
    TAFRESHI O A, SAADATNIA Z, GHAFFARI-MOSANENZADEH S, et al. Flexible and shape-configurable PI composite aerogel films with tunable dielectric properties[J]. Composites Communications,2022,34:101274. doi: 10.1016/j.coco.2022.101274
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (440) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return