Volume 40 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
GAO Yibo, LUO Jianlin, LI Zhiqing, et al. Orthogonal optimization mix ratio of fiber polymer repair protect mortar and its comprehensive performance realization mechanism[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5258-5275. doi: 10.13801/j.cnki.fhclxb.20221208.001
Citation: GAO Yibo, LUO Jianlin, LI Zhiqing, et al. Orthogonal optimization mix ratio of fiber polymer repair protect mortar and its comprehensive performance realization mechanism[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5258-5275. doi: 10.13801/j.cnki.fhclxb.20221208.001

Orthogonal optimization mix ratio of fiber polymer repair protect mortar and its comprehensive performance realization mechanism

doi: 10.13801/j.cnki.fhclxb.20221208.001
Funds:  National Natural Science Foundation of China (51878364); Projects from China Construction Eighth Division (JM20191030; QUT-2022-FW-0192; QUT-2022-FW-0028); The National “111” Project, and Gaofeng Discipline Project Funded by Shandong Province
  • Received Date: 2022-10-13
  • Accepted Date: 2022-11-26
  • Rev Recd Date: 2022-11-16
  • Available Online: 2022-12-09
  • Publish Date: 2023-09-15
  • Under background of carbon peaking and carbon neutrality economic savings, it is urgent to develop high performance repair protect mortar for infrastructure repairing and protecting in complex service environment. In this paper, the effects of steel fiber (SF) dosing, ethylene-vinyl acetate copolymer (EVA) emulsion powder dosing, and the proportion of high-belite sulfate cement and ordinary Portland cement on the workability, mechanical properties, interfacial bonding performance and waterproofing/impermeability durability of the fiber reinforced polymer repair protect mortar (SCPRM) were investigated by Taguchi orthogonal method. Results reveal that the flowability, setting time, flexural strength (ft), compressive strength (fc), bond strength at 14 days (fb14 d), drying shrinkage at 90 days, water absorption after 3 days soaking, surface contact angle and chlorine ion permeability coefficient are 226.0 mm, 41 min/63 min (initial/final setting time), 5.2/17.1 MPa (ft1 d/ft28 d), 16.7/73.2 MPa (fc1 d/fc28 d), 3.61 MPa (fb14 d), 16.44×10−5, 0.16%, 70.04°, and 0.9486×10−12 m2·s−1, respectively. The corresponding macroscopic/microscopic structures show that SFs are uniformly dispersed in the hydration products and the EVA polymer film was netlike distributed. FTIR reveals the hydration feature of compound cementitious system, and the corresponding influence mechanism of its hydration of EVA dosing. Finally, a high-performance repair protect mortar with excellent comprehensive performance and adaptability to complex service environment are successively prepared.

     

  • loading
  • [1]
    DAMME H V. Concrete material science: Past, present, and future innovations[J]. Cement and Concrete Research,2018,112:5-24. doi: 10.1016/j.cemconres.2018.05.002
    [2]
    WOETZEL J R. A blueprint for addressing the global affordable housing challenge[M]. Chicago: McKinsey Global Institute, 2014.
    [3]
    DOBBS R, POHL H, LIN D Y, et al. Infrastructure productivity: How to save 1 trillion USD a year[M]. Chicago: McKinsey Global Institute Report, 2013.
    [4]
    SUN W, MU R, LUO X, et al. Effect of chloride salt, freeze-thaw cycling and externally applied load on the performance of the concrete[J]. Cement and Concrete Research,2002,32(12):1859-1864. doi: 10.1016/S0008-8846(02)00769-X
    [5]
    SUN W, ZHANG Y M, YAN H D, et al. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles[J]. Cement and Concrete Research,1999,29(9):1519-1523. doi: 10.1016/S0008-8846(99)00097-6
    [6]
    WANG R, HU Z, LI Y, et al. Review on the deterioration and approaches to enhance the durability of concrete in the freeze-thaw environment[J]. Construction and Building Materials,2022,321:126371. doi: 10.1016/j.conbuildmat.2022.126371
    [7]
    TANG S W, YAO Y, ANDRADE C, et al. Recent durability studies on concrete structure[J]. Cement and Concrete Research,2015,78:143-154. doi: 10.1016/j.cemconres.2015.05.021
    [8]
    CASCUDO O, TEODORO R, OLIVEIRA A M, et al. Effect of different metakaolins on chloride-related durability of concrete[J]. ACI Materials Journal,2021,118(3):3-14.
    [9]
    BALOCH W L, SIAD H, LACHEMI M, et al. A review on the durability of concrete-to-concrete bond in recent rehabilitated structures[J]. Journal of Building Engineering,2021,44:103315. doi: 10.1016/j.jobe.2021.103315
    [10]
    LUO J L, LI Q Y, ZHAO T J, et al. Bonding and toughness properties of PVA fibre reinforced aqueous epoxy resin cement repair mortar[J]. Construction and Building Materials,2013,49:766-771. doi: 10.1016/j.conbuildmat.2013.08.052
    [11]
    SHI C, MA C, YANG Y, et al. Effects of curing temperature on mechanical properties of polymer-modified OPC-CA-gypsum repair mortar[J]. Construction and Building Materials,2022,319:126042. doi: 10.1016/j.conbuildmat.2021.126042
    [12]
    OKAMOTO P A, WHITING D. Use of maturity and pulse velocity techniques to predict strength gain of rapid concrete pavement repairs during curing period[J]. Transportation Research Record, 1994(1458): 85-90.
    [13]
    LI G Y. A new way to increase the long-term bond strength of new-to-old concrete by the use of fly ash[J]. Cement and Concrete Research,2003,33(6):799-806. doi: 10.1016/S0008-8846(02)01064-5
    [14]
    高为民. 硫铝酸盐水泥基修补砂浆制备与性能研究[D]. 济南: 济南大学, 2018.

    GAO Weimin. Study on preparation and properties of sulphoaluminate cement mortar[D]. Jinan: Jinan University, 2018(in Chinese).
    [15]
    SEEHRA S S, GUPTA S, KUMAR S. Rapid setting magnesium phosphate cement for quick repair of concrete pavements—Characterisation and durability aspects[J]. Cement and Concrete Research,1993,23(2):254-266. doi: 10.1016/0008-8846(93)90090-V
    [16]
    常利, 艾涛, 延西利, 等. 地聚合物水泥路面快速修补材料性能研究[J]. 武汉理工大学学报, 2014, 36(5):1671-4431.

    CHANG Li, AI Tao, YAN Xili, et al. Study on the properties of geopolymer concrete using as rapid repair materials for cement pavement[J]. Journal of Wuhan University of Technology,2014,36(5):1671-4431(in Chinese).
    [17]
    谭义. 碱矿渣快速修补砂浆制备与界面性能研究[D]. 重庆: 重庆大学, 2018.

    TAN Yi. Research on bonding interface properties and preparation of alkali-activated slag cement using as rapid repairing mortar[D]. Chongqing: Chongqing University, 2018(in Chinese).
    [18]
    MANSUR A A P, SANTOS D B, MANSUR H S. A microstructural approach to adherence mechanism of poly (vinyl alcohol) modified cement systems to ceramic tiles[J]. Cement and Concrete Research,2007,37(2):270-282. doi: 10.1016/j.cemconres.2006.11.011
    [19]
    TIAN Y, JIN X, JIN N, et al. Research on the microstructure formation of polyacrylate latex modified mortars[J]. Construction and Building Materials,2013,47:1381-1394. doi: 10.1016/j.conbuildmat.2013.06.016
    [20]
    WONGPRACHUM W, SAPPAKITTIPAKORN M, SUKONTASUKKUL P, et al. Resistance to sulfate attack and underwater abrasion of fiber reinforced cement mortar[J]. Construction and Building Materials,2018,189:686-694. doi: 10.1016/j.conbuildmat.2018.09.043
    [21]
    ZHANG X, DU M, FANG H, et al. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges[J]. Construction and Building Materials,2021,299:124290. doi: 10.1016/j.conbuildmat.2021.124290
    [22]
    SHI C, WANG P, MA C, et al. Effects of SAE and SBR on properties of rapid hardening repair mortar[J]. Journal of Building Engineering,2021,35:102000. doi: 10.1016/j.jobe.2020.102000
    [23]
    OJHA P N, KAURA P, SINGH B, et al. Evaluation of polymer modified mortar and bonding agent for structural repair[J]. Journal of Asian Concrete Federation,2021,7(2):56-62. doi: 10.18702/acf.2021.12.7.2.56
    [24]
    ZHAO F, LI H, LIU S, et al. Preparation and properties of an environment friendly polymer-modified waterproof mortar[J]. Construction and Building Materials,2011,25(5):2635-2638. doi: 10.1016/j.conbuildmat.2010.12.012
    [25]
    霍彦霖, 孙华阳, 刘天安, 等. 混杂纤维增强应变硬化水泥基复合材料抗弯冲击性能[J]. 复合材料学报, 2022, 39(11):5086-5097. doi: 10.13801/j.cnki.fhclxb.20220623.005

    HUO Yanlin, SUN Huayang, LIU Tianan, et al. Flexural impact behavior of hybrid fiber-reinforced strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica,2022,39(11):5086-5097(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220623.005
    [26]
    张云升, 孙伟, 李宗津. PVA短纤维和粉煤灰对地聚合物基复合材料流变学行为和弯曲性能的影响[J]. 复合材料学报, 2008, 25(6):166-174. doi: 10.3321/j.issn:1000-3851.2008.06.032

    ZHANG Yunsheng, SUN Wei, LI Zongjin. Effect of PVA short fiber and fly ash on rheological and flexural behaviors of geopolymer composites[J]. Acta Materiae Compositae Sinica,2008,25(6):166-174(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.06.032
    [27]
    赵焕起, 李国忠. 混杂纤维增强水泥基复合材料的力学性能[J]. 复合材料学报, 2014, 31(1):140-145. doi: 10.3969/j.issn.1000-3851.2014.01.020

    ZHAO Huanqi, LI Guozhong. Mechanics performance of hybrid fiber reinforced cement-based composites[J]. Acta Materiae Compositae Sinica,2014,31(1):140-145(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.020
    [28]
    张聪, 曹明莉. 多尺度纤维增强水泥基复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):661-668. doi: 10.13801/j.cnki.fhclxb.2014.03.018

    ZHANG Cong, CAO Mingli. Mechanical property test of a multi-scale fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica,2014,31(3):661-668(in Chinese). doi: 10.13801/j.cnki.fhclxb.2014.03.018
    [29]
    HAN G Y, LUO J L. Mechanical and shrinkage behaviors of ductile fiber-reinforced polymer repair mortar[J]. Key Engineering Materials,2020,841:14-19.
    [30]
    FELEKOGLU B, TURKEL S, ALTUNTAS Y. Effects of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars[J]. Cement and Concrete Composites,2007,29(5):391-396. doi: 10.1016/j.cemconcomp.2006.12.010
    [31]
    ZANOTTI C, BANTHIA N, PLIZZARI G. A study of some factors affecting bond in cementitious fiber reinforced repairs[J]. Cement and Concrete Research,2014,63:117-126. doi: 10.1016/j.cemconres.2014.05.008
    [32]
    ZANOTTI C, ROSTAGNO G, TINGLEY B. Further evidence of interfacial adhesive bond strength enhancement through fiber reinforcement in repairs[J]. Construction and Building Materials,2018,160:775-785. doi: 10.1016/j.conbuildmat.2017.12.140
    [33]
    江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967. doi: 10.13801/j.cnki.fhclxb.20181101.001

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1957-1967(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181101.001
    [34]
    罗兴华. 钢纤维水泥砂浆与混凝土界面粘结性能试验研究[D]. 长沙: 湖南大学, 2009.

    LUO Xinghua. The research on interfacial bond behavior of steel fiber cement mortar to concrete[D]. Changsha: Hu'nan University, 2009(in Chinese).
    [35]
    孙科科. 硅酸盐水泥—硫铝酸盐水泥基修补材料及防腐抗渗性能研究[D]. 济南: 济南大学, 2017.

    SUN Keke. Study on anticorrosion and impermeability of repaired materials with blending ordinary portland cement and sulphoaluminate cement[D]. Jinan: Jinan University, 2017(in Chinese).
    [36]
    李贺, 罗健林, 李秋义, 等. 韧性纤维增强聚合物砂浆的粘结修复与收缩耐久性能[J]. 化工新型材料, 2019, 47(7):266-270.

    LI He, LUO Jianlin, LI Qiuyi, et al. Bonding repair and shrinkage durability of ductile fiber-reinforced polymer mortar[J]. New Chemical Materials,2019,47(7):266-270(in Chinese).
    [37]
    中国国家标准化管理委员会. 水泥胶砂流动扩展度测定方法: GB/T 2419—2005[S]. 北京: 中国建材工业出版社, 2005.

    Standardization Administration of China. Test method for fluidity of cement mortar: GB/T 2419—2005[S]. Beijing: China Building Materials Press, 2005(in Chinese).
    [38]
    陕西省建筑科学研究院. 建筑砂浆基本性能试验方法: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Shaanxi Academy of Building Science. Standard for test method of performance on building mortar: JGJ/T 70—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [39]
    中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of China. Method of testing cements—Determination of strength: GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [40]
    中华人民共和国工业和信息化部. 修补砂浆: JC/T 2381—2016[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Industry and Information Technology of People's Republic of China. Repairing mortar: JC/T 2381—2016[S]. Beijing: China Architecture & Building Press, 2016(in Chinese).
    [41]
    中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [42]
    KWAN A K H, LI Y. Effects of fly ash microsphere on rheology, adhesiveness and strength of mortar[J]. Construction and Building Materials,2013,42:137-145. doi: 10.1016/j.conbuildmat.2013.01.015
    [43]
    迟琳. 高贝利特硫铝酸盐水泥活化和水化机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    CHI Lin. Study on the activation and hydration mechanism of belite calcium sulfoaluminate cement [D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [44]
    KONG X, EMMERLING S, PAKUSCH J, et al. Retardation effect of styrene-acrylate copolymer latexes on cement hydration[J]. Cement and Concrete Research,2015,75:23-41. doi: 10.1016/j.cemconres.2015.04.014
    [45]
    张霄. 聚合物改性快速水泥基修补材料及其机理研究[D]. 西安: 西安建筑科技大学, 2018.

    ZHANG Xiao. Research on property and mechanism of polymer modified rapid cement-based repaired material [D]. Xi'an: Xi'an University of Architecture and Technology, 2018(in Chinese).
    [46]
    BULLARD J W, JENNINGS H M, LIVINGSTON R A, et al. Mechanisms of cement hydration[J]. Cement and Concrete Research,2011,41(12):1208-1223. doi: 10.1016/j.cemconres.2010.09.011
    [47]
    SCRIVENER K L, NONAT A. Hydration of cementitious materials, present and future[J]. Cement and Concrete Research,2011,41(7):651-665. doi: 10.1016/j.cemconres.2011.03.026
    [48]
    WU Y Y, MA B G, WANG J, et al. Study on interface properties of EVA-modified cement mortar[J]. Advanced Materials Research,2011,250:875-880.
    [49]
    李帅. 可再分散乳胶粉及粉煤灰对砂浆性能的影响[D]. 郑州: 华北水利水电大学, 2019.

    LI Shuai. Effect of redispersible latex powder and fly ash mortar performance[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019(in Chinese).
    [50]
    谢慧才, 李庚英, 熊光晶. 新老混凝土界面粘结力形成机理[J]. 硅酸盐通报, 2003, 22(3):7-10. doi: 10.3969/j.issn.1001-1625.2003.03.002

    XIE Huicai, LI Gengying, XIONG Guangjing. The mechanism formed the bonding force between new and old concrete[J]. Bulletin of the Chinese Ceramic Society,2003,22(3):7-10(in Chinese). doi: 10.3969/j.issn.1001-1625.2003.03.002
    [51]
    ROSTAGNO G, TINGLEY B, ZANOTTI C. Bond strength of steel FRC repairs to concrete substrate: Investigation on adhesion strength, friction, and bond enhancing mechanisms[C]// HORDIJK D A. Tech Concrete: Where Technology and Engineering Meet: Proceedings of the 2017 FIB Symposium. Maastricht: Springer International Publishing, 2018: 148-156.
    [52]
    李长辉, 陈雪芳, 张献民, 等. 合成粗聚丙烯纤维与水泥砂浆界面粘结力学性能[J]. 复合材料学报, 2022, 40(4):2427-2440.

    LI Changhui, CHEN Xuefang, ZHANG Xianmin, et al. Interface mechanical bonding properties between coarse synthetic polypropylene fiber and cement mortar[J]. Acta Materiae Compositae Sinica,2022,40(4):2427-2440(in Chinese).
    [53]
    BANFILL P F G, BELLAGRAA L, BENAGGOUN L. Properties of polymer-modified mortars made with blended cements[J]. Advances in Cement Research,1993,5(19):103-109. doi: 10.1680/adcr.1993.5.19.103
    [54]
    LIU S, HU Q, ZHAO F, et al. Utilization of steel slag, iron tailings and fly ash as aggregates to prepare a polymer-modified waterproof mortar with a core-shell styrene-acrylic copolymer as the modifier[J]. Construction and Building Materials,2014,72:15-22. doi: 10.1016/j.conbuildmat.2014.09.016
    [55]
    于俊超, 赵庆新. 钢纤维对混凝土徐变性能的影响[J]. 硅酸盐学报, 2013, 41(8):1087-1093. doi: 10.7521/j.issn.0454-5648.2013.08.10

    YU Junchao, ZHAO Qingxin. Effect of steel fiber on creep behavior of concrete[J]. Journal of the Chinese Ceramic Society,2013,41(8):1087-1093(in Chinese). doi: 10.7521/j.issn.0454-5648.2013.08.10
    [56]
    WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-994.
    [57]
    JIN Z Q, SUN W, ZHANG Y S, et al. Interaction between sulfate and chloride solution attack of concretes with and without fly ash[J]. Cement and Concrete Research,2007,37(8):1223-1232. doi: 10.1016/j.cemconres.2007.02.016
    [58]
    郭丽萍, 张健, 曹园章, 等. 超高性能水泥基材料复合盐侵蚀研究: 合成Friedel盐和钙矾石在硫酸盐和氯盐溶液中的稳定性[J]. 材料导报, 2018, 31(23):132-137.

    GUO Liping, ZHANG Jian, CAO Yuanzhang, et al. A study for compound salts attack on ultra-high performance cement-based materials: The stabilities of chemically synthesized friedel salt and ettringite in solutons of sulfates and chloride salts[J]. Materials Reports,2018,31(23):132-137(in Chinese).
    [59]
    冯琦. 地聚合物基路面修补砂浆的制备与性能研究[D]. 沈阳: 沈阳建筑大学, 2019.

    FENG Qi. Study on preparation and properties of geopolymer-based pavement repair mortar[D]. Shenyang: Shenyang Jianzhu University, 2019(in Chinese).
    [60]
    崔弋. 混凝土结构防护与修补砂浆的试验研究[D]. 青岛: 青岛理工大学, 2012.

    CUI Yi. Test research of concrete structure’s protective and repair mortar[D]. Qingdao: Qingdao Technological University, 2012(in Chinese).
    [61]
    胡华洁. 用于高铁无砟轨道损伤快速修复磷酸镁水泥研究[D]. 上海: 上海交通大学, 2015.

    HU Huajie. Experimental research on magnesium phosphate cement for rapid repair of ballastless track in high-speed railway[D]. Shanghai: Shanghai Jiao Tong University, 2015(in Chinese).
    [62]
    陈冬冬. 基于计算优化法的磷酸镁材料的设计和应用研究[D]. 青岛: 青岛理工大学, 2021.

    CHEN Dongdong. Design and field application of magnesium phosphate cement based on computational optimization[D]. Qingdao: Qingdao Technological University, 2021(in Chinese).
    [63]
    LIU C J, HUANG X C, WU Y Y, et al. The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures[J]. Construction and Building Materials,2021,288:123059. doi: 10.1016/j.conbuildmat.2021.123059
    [64]
    PERA J, HUSSON S, GUILHOT B. Influence of finely ground limestone on cement hydration[J]. Cement and Concrete Composites,1999,21(2):99-105. doi: 10.1016/S0958-9465(98)00020-1
    [65]
    YLMEN R, JAGLID U, STEENARI B M, et al. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques[J]. Cement and Concrete Research,2009,39(5):433-439. doi: 10.1016/j.cemconres.2009.01.017
    [66]
    SAAFI M, TANG L, FUNG J, et al. Enhanced properties of graphene/fly ash geopolymeric composite cement[J]. Cement and Concrete Research,2015,67:292-299. doi: 10.1016/j.cemconres.2014.08.011
    [67]
    LIU C J, CHEN F L, WU Y Y, et al. Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials[J]. Nanotechnology Reviews, 2021, 10(1): 1208-1235.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(21)

    Article Metrics

    Article views (636) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return