Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
JIANG Bo, GUO Xinyu, JIAO Huan, et al. Direct ink writing of lignin-based composites and their applications[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1913-1923. doi: 10.13801/j.cnki.fhclxb.20221205.002
Citation: JIANG Bo, GUO Xinyu, JIAO Huan, et al. Direct ink writing of lignin-based composites and their applications[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1913-1923. doi: 10.13801/j.cnki.fhclxb.20221205.002

Direct ink writing of lignin-based composites and their applications

doi: 10.13801/j.cnki.fhclxb.20221205.002
Funds:  National Natural Science Foundation of China (32201500; 32271797); Natural Science Foundation of Jiangsu Province (BK20220431); Natural Science Foundation of the Jiangsu Higher Education Institutions of China (21KJB220001); Open-Ended Fund of National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials (2022KFJJ05)
  • Received Date: 2022-10-25
  • Accepted Date: 2022-11-26
  • Rev Recd Date: 2022-11-21
  • Available Online: 2022-12-05
  • Publish Date: 2023-04-15
  • As the most abundant renewable aromatic biopolymer in nature, lignin recently has received extensive attention in the fields of energy, environment, and medicine. In particular, the use of 3D printing technology to construct lignin-based composites with tunable and desired structures and functions is one of the important ways to pro-mote the high-value utilization of lignin, which can also avoid the negative effects during traditional material preparation that caused by the diverse chemical structure, high polydispersity in molecular weight, and rigid structure of lignin. This paper focuses on the direct ink writing of lignin-based composites, mainly with the achievements and recent progress critically reviewed. Firstly, the structural features of lignin and the technology of direct ink writing are briefly summarized. Subsequently, the structure-rheology behavior relationship during 3D printing of lignin-based composites is discussed. Finally, the functional applications of 3D printed lignin-based composites in engineering, energy, and environment, as well as the potential problems and challenges, are summarized. Further, the main points towards future directions on lignin composites based on direct in writing are also highlighted.

     

  • loading
  • [1]
    CHEN C, KUANG Y, ZHU S, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials,2020,5:642-666. doi: 10.1038/s41578-020-0195-z
    [2]
    MANDLEKAR N, CAYLA A, RAULT F, et al. An overview on the use of lignin and its derivatives in fire retardant polymer systems[M]//Lignin-Trends and Applications. London: InTechOpen, 2018: 207-231.
    [3]
    姜波, 金永灿. 基于木质素分子结构特性的功能材料研究进展[J]. 复合材料学报, 2022, 39(7):3059-3083. doi: 10.13801/j.cnki.fhclxb.20220321.001

    JIANG Bo, JIN Yongcan. Research progress of lignin functional materials based on its structural properties[J]. Acta Materiae Compositae Sinica,2022,39(7):3059-3083(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220321.001
    [4]
    VAN DE WERKEN N, TEKINALP H, KHANBOLOUKI P, et al. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective[J]. Additive Manufacturing,2020,31:100962. doi: 10.1016/j.addma.2019.100962
    [5]
    卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4):1-4. doi: 10.3969/j.issn.1671-5276.2013.04.001

    LU Bingheng, LI Dichen. Development of the additive manufacturing (3D printing) technology[J]. Machine Building Automation,2013,42(4):1-4(in Chinese). doi: 10.3969/j.issn.1671-5276.2013.04.001
    [6]
    PARK S, SHOU W, MAKATURA L, et al. 3D printing of polymer composites: Materials, processes, and applications[J]. Matter,2022,5(1):43-76. doi: 10.1016/j.matt.2021.10.018
    [7]
    LIU C J. Deciphering the enigma of lignification: Precursor transport, oxidation, and the topochemistry of lignin assembly[J]. Molecular Plant,2012,5(2):304-317. doi: 10.1093/mp/ssr121
    [8]
    袁同琦, 孙卓华, 戴林. 木质素化学[M]. 北京: 中国轻工业出版社, 2021.

    YUAN Tongqi, SUN Zhuohua, DAI Lin. Lignin chemistry[M]. Beijing: China Light Industry Press Ltd., 2021(in Chinese).
    [9]
    ABU-OMAR M M, BARTA K, BECKHAM G T, et al. Guidelines for performing lignin-first biorefining[J]. Energy & Environmental Science,2021,14:262-292. doi: 10.1039/D0EE02870C
    [10]
    JIANG B, SONG J, JIN Y. A flavonoid monomer tricin in Gramineous plants: Metabolism, bio/chemosynthesis, biological properties, and toxicology[J]. Food Chemistry,2020,320:126617. doi: 10.1016/j.foodchem.2020.126617
    [11]
    FIGUEIREDO P, LINTINEN K, HIRVONEN J T, et al. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications[J]. Progress in Materials Science,2018,93:233-269. doi: 10.1016/j.pmatsci.2017.12.001
    [12]
    JIANG B, CHEN C, LIANG Z, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement[J]. Advanced Functional Materials,2020,30(4):1906307. doi: 10.1002/adfm.201906307
    [13]
    SIPPONEN M H, LANGE H, CRESTINI C, et al. Lignin for nano- and microscaled carrier systems: Applications, trends, and challenges[J]. ChemSusChem,2019,12(10):2039-2054. doi: 10.1002/cssc.201900480
    [14]
    SUGIARTO S, LEOW Y, TAN C L, et al. How far is Lignin from being a biomedical material?[J]. Bioactive Materials,2022,8:71-94. doi: 10.1016/j.bioactmat.2021.06.023
    [15]
    SAADI M, MAGUIRE A, POTTACKAL N T, et al. Direct ink writing: A 3D printing technology for diverse materials[J]. Advanced Materials,2022,34(28):2108855. doi: 10.1002/adma.202108855
    [16]
    TAGLIAFERRI S, PANAGIOTOPOULOS A, MATTEVI C. Direct ink writing of energy materials[J]. Materials Advances,2021,2(2):540-563. doi: 10.1039/D0MA00753F
    [17]
    LEWIS J A, SMAY J E, STUECKER J, et al. Direct ink writing of three-dimensional ceramic structures[J]. Journal of the American Ceramic Society,2006,89(12):3599-3609. doi: 10.1111/j.1551-2916.2006.01382.x
    [18]
    ZHENG X, SMITH W, JACKSON J, et al. Multiscale metallic metamaterials[J]. Nature Materials,2016,15:1100-1106. doi: 10.1038/nmat4694
    [19]
    王玉, 张靖翔, 张宝强, 等. 3D打印石墨烯基功能材料的研究进展[J]. 中国材料进展, 2018, 37(8):620-631.

    WANG Yu, ZHANG Jingxiang, ZHANG Baoqiang, et al. Recent advances of 3D printing graphene based functional materials[J]. Materials China,2018,37(8):620-631(in Chinese).
    [20]
    姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11):1-8.

    JIANG Yulin, WANG Hui, ZHANG Keqin. Research progress of silk fibroin-based hydrogel bioinks for 3D bio-printing[J]. Journal of Textile Research,2021,42(11):1-8(in Chinese).
    [21]
    LEWIS J A. Direct ink writing of 3D functional materials[J]. Advanced Functional Materials,2006,16(17):2193-2204. doi: 10.1002/adfm.200600434
    [22]
    COUSSOT P. Yield stress fluid flows: A review of experimental data[J]. Journal of Non-Newtonian Fluid Mechanics,2014,211:31-49. doi: 10.1016/j.jnnfm.2014.05.006
    [23]
    QIAN Y, LI C, QI Y, et al. 3D printing of graphene oxide composites with well controlled alignment[J]. Carbon,2021,171:777-784. doi: 10.1016/j.carbon.2020.08.077
    [24]
    赵宇, 武喜凯, 朱伶俐, 等. 玄武岩纤维对3D打印水泥基材料可打印性的影响[J]. 复合材料学报, 2022, 39(11):5540-5550.

    ZHAO Yu, WU Xikai, ZHU Lingli, et al. Influence of basalt fiber on the printability of 3D printing cement-based materials[J]. Acta Materiae Compositae Sinica,2022,39(11):5540-5550(in Chinese).
    [25]
    LIANG Z, PEI Y, CHEN C, et al. General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment[J]. ACS Nano,2019,13(11):12653-12661. doi: 10.1021/acsnano.9b04202
    [26]
    ROCHA V G, SAIZ E, TIRICHENKO I S, et al. Direct ink writing advances in multi-material structures for a sustainable future[J]. Journal of Materials Chemistry A,2020,8(31):15646-15657. doi: 10.1039/D0TA04181E
    [27]
    CORKER A, NG H C, POOLE R J, et al. 3D printing with 2D colloids: Designing rheology protocols to predict 'printability' of soft-materials[J]. Soft Matter,2019,15(6):1444-1456. doi: 10.1039/C8SM01936C
    [28]
    XIA Y, LU Z, CAO J, et al. Microstructure and mechanical property of Cf/SiC core/shell composite fabricated by direct ink writing[J]. Scripta Materialia,2019,165:84-88. doi: 10.1016/j.scriptamat.2019.02.016
    [29]
    SKYLAR-SCOTT M A, MUELLER J, VISSER C W, et al. Voxelated soft matter via multimaterial multinozzle 3D printing[J]. Nature,2019,575:330-335. doi: 10.1038/s41586-019-1736-8
    [30]
    PENG X, KUANG X, ROACH D J, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices[J]. Additive Manufacturing,2021,40:101911. doi: 10.1016/j.addma.2021.101911
    [31]
    JIANG B, YAO Y, LIANG Z, et al. Lignin-based direct ink printed structural scaffolds[J]. Small,2020,16(31):1907212. doi: 10.1002/smll.201907212
    [32]
    EBERS L S, LABORIE M P. Direct ink writing of fully bio-based liquid crystalline lignin/hydroxypropyl cellulose aqueous inks: Optimization of formulations and printing parameters[J]. ACS Applied Materials & Interfaces,2020,3(10):6897-6907. doi: 10.1021/acsabm.0c00800
    [33]
    BAHCEGUL E G, BAHCEGUL E, OZKAN N. 3D printing of crude lignocellulosic biomass extracts containing hemicellulose and lignin[J]. Industrial Crops and Products,2022,186:115234. doi: 10.1016/j.indcrop.2022.115234
    [34]
    ÄKRÄS L. 3D bioprinting inks based on cellulose nanofibrils and colloidal lignin particles[D]. Helsinki: Aalto University, 2019.
    [35]
    ZHANG X, MORITS M, JONKERGOUW C, et al. Three-dimensional printed cell culture model based on spherical colloidal lignin particles and cellulose nanofibril-alginate hydrogel[J]. Biomacromolecules,2020,21(5):1875-1885. doi: 10.1021/acs.biomac.9b01745
    [36]
    GLEUWITZ F R, SIVASANKARAPILLAI G, SIQUEIRA G, et al. Lignin in bio-based liquid crystalline network material with potential for direct ink writing[J]. ACS Applied Bio Materials,2020,3(9):6049-6058. doi: 10.1021/acsabm.0c00661
    [37]
    ROMAN J, NERI W, FIERRO V, et al. Lignin-graphene oxide inks for 3D printing of graphitic materials with tunable density[J]. Nano Today,2020,33:100881. doi: 10.1016/j.nantod.2020.100881
    [38]
    JIANG B, HUANG H, GONG W, et al. Wood-inspired binder enabled vertical 3D printing of g-C3N4/CNT arrays for highly efficient photoelectrochemical hydrogen evolution[J]. Advanced Functional Materials,2021,31(45):2105045. doi: 10.1002/adfm.202105045
    [39]
    NAN B, GALINDO-ROSALES F J, FERREIRA J M F. 3D printing vertically: Direct ink writing free-standing pillar arrays[J]. Materials Today,2020,35:16-24. doi: 10.1016/j.mattod.2020.01.003
    [40]
    NGUYEN N A, BARNES S H, BOWLAND C C, et al. A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability [J]. Science Advances, 2018, 4(12): eaat4967.
    [41]
    王会会, 杨健, 杨怡洛, 等. 木质素及其衍生物在3D打印光敏树脂中的应用研究[J]. 复合材料学报, 2022, 40(4):1964-1978. doi: 10.13801/j.cnki.fhclxb.20220819.003

    WANG Huihui, YANG Jian, YANG Yiluo, et al. Researches and applications of lignin and its derivatives in 3D printing photosensitive resins[J]. Acta Materiae Compositae Sinica,2022,40(4):1964-1978(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220819.003
    [42]
    AJDARY R, KRETZSCHMAR N, BANIASADI H, et al. Selective laser sintering of lignin-based composites[J]. ACS Sustainable Chemistry Engineering,2021,9(7):2727-2735. doi: 10.1021/acssuschemeng.0c07996
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1012) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return