Volume 40 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
JI Shuaiyan, HUANG Chengyi, CAI Penglin, et al. Polydopamine-halloysite nanotubes modified stainless steel mesh and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5124-5133. doi: 10.13801/j.cnki.fhclxb.20221201.002
Citation: JI Shuaiyan, HUANG Chengyi, CAI Penglin, et al. Polydopamine-halloysite nanotubes modified stainless steel mesh and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5124-5133. doi: 10.13801/j.cnki.fhclxb.20221201.002

Polydopamine-halloysite nanotubes modified stainless steel mesh and its oil-water separation performance

doi: 10.13801/j.cnki.fhclxb.20221201.002
  • Received Date: 2022-10-11
  • Accepted Date: 2022-11-18
  • Rev Recd Date: 2022-11-16
  • Available Online: 2022-12-02
  • Publish Date: 2023-09-15
  • The massive generation of industrial oily wastewater and the frequent occurrence of oil spills have caused efficient treatment of oily wastewater to emerge as a global challenge. A superhydrophilic/ underwater superoleophobic stainless mesh (PDA-HNTs/SSM) was conveniently fabricated by in-situ immersion of polydopamine (PDA) and halloysite nanotubes (HNTs) and used for oil-water spearation. The surface morphology, chemical composition and wettability of the modified SSM were analyzed by SEM, EDS, FTIR, XRD, XPS and contact Angle instrument. The results showed that the wettability and surface micro-nano hierarchical structure of PDA-HNTs/SSM can be controlled by immersion times of PDA-HNTs. PDA-HNTs/SSM obtained by immersion for 10 times had the best wetting performance, the contact angle underwater of dichloromethane was 157°, and the sliding Angle is less than 5°. Dimetylbenzene, cyclohexane, n-hexane, petroleum ether and dichloromethane were used for oil-water separation test. The separation efficiency of PDA-HNTs/SSM was more than 99%, and still maintained above 95.5% after 50 cycles. Moreover, after standing in 1 mol/L HCl, NaOH and NaCl solution for 7 days or rubbing with sandpaper for 10 m, PDA-HNTs/SSM still maintained stable underwater superhydrophobility and good oil-water separation ability.

     

  • loading
  • [1]
    QIU L, ZHANG J X, GUO Z G, et al. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation[J]. Separation and Purification Technology,2021,273:118994. doi: 10.1016/j.seppur.2021.118994
    [2]
    LI L L, SHI Y B, HUANG Y, et al. The effect of governance on industrial wastewater pollution in China[J]. International Journal of Environmental Research and Public Health,2022,19(15):9316. doi: 10.3390/ijerph19159316
    [3]
    XUE Z X, WANG S T, LIN L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation[J]. Advanced Materials,2011,23(37):4270-4273. doi: 10.1002/adma.201102616
    [4]
    王春莹, 齐博浩, 刘长松, 等. 可控润湿性的ZnO修饰不锈钢网的制备及其油水分离性能[J]. 复合材料学报, 2022, 39(12):5827-5834. doi: 10.13801/j.cnki.fhclxb.20220110.001

    WANG Chunying, QI Bohao, LIU Changsong, et al. Preparation of ZnO modified stainless steel mesh with controllable wettability and its oil-water separation performance[J]. Acta Materiae Compositae Sinica,2022,39(12):5827-5834(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220110.001
    [5]
    陈迪, 黄杉, 杨园园, 等. 超浸润性γ-氨丙基三乙氧基硅烷-TiO2包覆织物的制备及其水净化性能[J]. 复合材料学报, 2022, 39(10):4620-4630.

    CHEN Di, HUANG Shan, YANG Yuanyuan, et al. Preparation of superwetting γ-aminopropyltriethoxysilane-TiO2 coated fabric and its water purification performances[J]. Acta Materiae Compositae Sinica,2022,39(10):4620-4630(in Chinese).
    [6]
    XIONG W, LI L, QIAO F, et al. Air superhydrophilic-superoleophobic SiO2-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability[J]. Journal of Colloid And Interface Science,2021,600:118-126. doi: 10.1016/j.jcis.2021.05.004
    [7]
    LIU Z, CAO R, WEI A F, et al. Superflexible/superhydrophilic PVDF-HFP/CuO-nanosheet nanofibrous membrane for efficient microfiltration[J]. Applied Nanoscience,2019,9(8):1991-2000. doi: 10.1007/s13204-019-01014-4
    [8]
    ALGIERI C, DRIOLI E. Zeolite membranes: Synthesis and applications[J]. Separation and Purification Technology,2021,278:119295.
    [9]
    HUANG X W, ZHANG S, XIAO W, et al. Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion[J]. Journal of Membrane Science,2020,614:118500. doi: 10.1016/j.memsci.2020.118500
    [10]
    YANG X, HE Y, ZENG G Y, et al. Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic ploy(vinylidene fluoride) membrane for oil/water emulsion separation[J]. Chemical Engineering Journal,2017,321:245-256. doi: 10.1016/j.cej.2017.03.106
    [11]
    ZHANG X, ZHANG Z P, ZENG Z X, et al. Superoleophobic graphene oxide/halloysite nanotube composite membranes for oil-water separation[J]. Materials Chemistry and Physics,2021,263:124347. doi: 10.1016/j.matchemphys.2021.124347
    [12]
    ZHANG L, WEI K, ZENG G Y, et al. High-efficient oil/water separation membrane based on MXene nanosheets by co-incorporation of APTES and amine functionalized carbon nanotubes[J]. Journal of Environmental Chemical Engineering,2021,9(6):106658. doi: 10.1016/j.jece.2021.106658
    [13]
    JIN L F, PAN Q L, LI X R, et al. Preparation of three-dimensional MF/Ti3C2Tx/PmPD by interfacial polymerization for efficient hexavalent chromium removal[J]. Nanomaterials,2022,12(16):2838. doi: 10.3390/nano12162838
    [14]
    高德玉, 程志林. 微波原位合成2D Ni-Fe MOF/硅藻土复合材料及其改性聚乙烯醇水凝胶不锈钢筛网油水分离性能[J]. 复合材料学报, 2023, 40(3): 1686-1695.

    GAO Deyu, CHENG Zhilin. Microwave in-situ synthesis of 2D Ni-Fe MOF/Diatomite composite and oil-water separation performance of modified polyvinyl alcohol hydrogel stainless steel screen[J]. Acta Materiae Compositae Sinica, 2023, 40(3):1686-1695(in Chinese).
    [15]
    陈芬, 杜春慧, 胡锦泰, 等. MOF原位生长改性聚对氯甲基苯乙烯-聚偏氟乙烯正渗透复合膜及其对乳化油废水的抗污染性[J]. 复合材料学报, 2023, 40(4): 2075-2084.

    CHEN Fen, DU Chunhui, HU Jintai, et al. MOF in-situ growth modified poly(p-chloromethyl styrene)-polyvinylidene fluoride forward osmosis composite membrane and its anti-fouling performance for emulsified oil wastewater[J]. Acta Materiae Compositae Sinica, 2023, 40(4):2075-2084(in Chinese).
    [16]
    JIA Y D, GUAN K C, ZHANG P F, et al. Surface engineering with microstructured gel networks for superwetting membranes[J]. Journal of Materials Chemistry A,2021,9(12):7924-7934. doi: 10.1039/D0TA12278E
    [17]
    JIN Y T, HUANG L W, ZHENG K, et al. Blending electrostatic spinning fabrication of superhydrophilic/underwater superoleophobic polysulfonamide/polyvinylpyrrolidone nanofibrous membranes for efficient oil-water emulsion separation[J]. Langmuir,2022,38(27):8241-8251. doi: 10.1021/acs.langmuir.2c00640
    [18]
    WEI C J, LIN L G, ZHAO Y P, et al. Fabrication of pH-sensitive superhydrophilic/ underwater superoleophobic poly(vinylidene fluoride)-graft-(SiO2 nanoparticles and PAMAM Dendrimers) membranes for oil-water separation[J]. ACS Applied Materials & Interfaces,2020,12(16):19130-19139.
    [19]
    HUANG Q, CHEN J Y, LIU M Y, et al. Polydopamine-based functional materials and their applications in energy, environmental, and catalytic fields: State-of-the-art review[J]. Chemical Engineering Journal,2020,387:124019. doi: 10.1016/j.cej.2020.124019
    [20]
    LIU Z, FAN X L, HAN M Y, et al. Significantly improved interfacial properties and wave-transparent performance of PBO fibers/cyanate esters laminated composites via introducing a polydopamine/ZIF-8 hybrid membrane[J]. Composites Science and Technology,2022,223:109426. doi: 10.1016/j.compscitech.2022.109426
    [21]
    吕佳帅男, 狄凯莹, 蔡鹏麟, 等. 埃洛石复配2-羧乙基苯基次膦酸对环氧树脂阻燃及力学性能的影响[J]. 复合材料学报, 2021, 38(1):120-128. doi: 10.13801/j.cnki.fhclxb.20200603.003

    LYU Jiashuainan, DI Kaiying, CAI Penglin, et al. Effects of halloysite nanotubes and 2-carboxyethyl phenylphosphonic acid on flame retardant and mechanical properties of epoxy resin[J]. Acta Materiae Compositae Sinica,2021,38(1):120-128(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200603.003
    [22]
    ZHAO X J, LUO Y Y, TAN P X, et al. Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation[J]. International Journal of Biological Macromolecules,2019,132:406-415. doi: 10.1016/j.ijbiomac.2019.03.219
    [23]
    GUO D Y, CHEN J H, HOU K, et al. A facile preparation of superhydrophobic halloysite-based meshes for efficient oil-water separation[J]. Applied Clay Science,2018,156:195-201. doi: 10.1016/j.clay.2018.01.034
    [24]
    GAO D Y, LIU Z, CHENG Z L. Superhydrophilic and underwater superoleophobic in-situ derived 2D Ni-Fe MOF/HNTs composite-enhanced polyvinyl alcohol (PVA) hydrogel membrane for gravity-driven oil/water separation[J]. Journal of Environmental Chemical Engineering,2022,10(3):107904. doi: 10.1016/j.jece.2022.107904
    [25]
    CAI P L, DI K Y, LV J S N, et al. Environmentally benign and durable superhydrophobic coatings based on short fluorocarbon chain siloxane modified halloysite nanotubes for oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,630:127540. doi: 10.1016/j.colsurfa.2021.127540
    [26]
    ZHANG Y, TANG A D, YANG H M, et al. Applications and interfaces of halloysite nanocomposites[J]. Applied Clay Science,2016,119(1):8-17.
    [27]
    YANG X, DU Y, ZHANG X, et al. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance[J]. Langmuir,2017,33(9):2318-2324. doi: 10.1021/acs.langmuir.6b04465
    [28]
    XU W, XU L H, PAN H, et al. Robust ZnO/HNTs-based superhydrophobic cotton fabrics with UV shielding, self-cleaning, photocatalysis, and oil/water separation[J]. Cellulose,2022,29(7):4021-4037. doi: 10.1007/s10570-022-04462-4
    [29]
    CAO Y Z, LIU N, ZHANG W F, et al. One-step coating toward multifunctional applications: Oil/water mixtures and emulsions separation and contaminants adsorption[J]. ACS Applied Materials & Interfaces,2016,8(5):3333-3339.
    [30]
    SCHIAVON C S, MOREIRA M L, CAVA S S, et al. Wetting-state transition of random surfaces[J]. Thin Solid Films,2022,745:139102. doi: 10.1016/j.tsf.2022.139102
    [31]
    JU K Y, LEE Y, LEE S, et al. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property[J]. Biomacromolecules,2011,12(3):625-632. doi: 10.1021/bm101281b
    [32]
    ZHAO X T, JIA N, CHENG L J, et al. Dopamine-induced biomimetic mineralization for in situ developing antifouling hybrid membrane[J]. Journal of Membrane Science,2018,560:47-57. doi: 10.1016/j.memsci.2018.05.009
    [33]
    COY E, IATSUNSKYI I, COLMENARES J C, et al. Polydopamine films with 2D-like layered structure and high mechanical resilience[J]. ACS Applied Materials & Interfaces,2021,13(19):23113-23120.
    [34]
    HOU K, ZENG Y C, ZHOU C L, et al. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation[J]. Applied Surface Science,2017,416:344-352. doi: 10.1016/j.apsusc.2017.03.302
    [35]
    FENG J H, CAI Y W, WANG X X, et al. Designed core-shell Fe3O4@polydopamine for effectively removing uranium(VI) from aqueous solution[J]. Bulletin of Environmental Contamination and Toxicology,2021,106(1):165-174.
    [36]
    WANG Z, ZHAO S J, SONG R Y, et al. The synergy between natural polyphenol-inspired catechol moieties and plant protein-derived bio-adhesive enhances the wet bonding strength[J]. Scientific Reports,2017,7(1):9664. doi: 10.1038/s41598-017-10007-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (537) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return