Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
SONG Xin, GAO Zhihao, LUO Lin, et al. Research progress of organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1857-1878. doi: 10.13801/j.cnki.fhclxb.20221031.002
Citation: SONG Xin, GAO Zhihao, LUO Lin, et al. Research progress of organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1857-1878. doi: 10.13801/j.cnki.fhclxb.20221031.002

Research progress of organic-inorganic composite electrolytes for all-solid-state lithium batteries

doi: 10.13801/j.cnki.fhclxb.20221031.002
Funds:  General Project of China Postdoctoral Science Foundation (2017M622133); Overseas Taishan Scholars (N/A); Qingdao Science and Technology Planning Project Youth Special (18-2-2-3-jch)
  • Received Date: 2021-08-08
  • Accepted Date: 2021-10-24
  • Rev Recd Date: 2021-09-22
  • Available Online: 2022-11-01
  • Publish Date: 2023-04-15
  • At present, lithium-ion batteries face many problems due to the use of liquid electrolytes, such as narrow operating temperature range, poor thermal stability, easy leakage, and formation of lithium dendrites. The development of all-solid-state lithium batteries is one of the feasible ways to improve the energy density and safety of batteries. In this paper, the types and conduction mechanisms of solid electrolytes are firstly summarized, and then the selection of polymer matrix and lithium salt in organic-inorganic composite solid electrolytes and the effects of inorganic fillers of different dimensions on electrolyte properties, especially mechanical properties, are described in detail. Finally, the research summary and prospect of organic-inorganic composite solid electrolytes are presented.

     

  • loading
  • [1]
    CHEN R, LI Q, YU X, et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews,2020,120(14):6820-6877. doi: 10.1021/acs.chemrev.9b00268
    [2]
    MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications,2020,11(1):1-9. doi: 10.1038/s41467-019-13993-7
    [3]
    ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy,2018,3(1):16-21. doi: 10.1038/s41560-017-0047-2
    [4]
    SHI Y, TAN D, LI M, et al. Nanohybrid electrolytes for high-energy lithium-ion batteries: Recent advances and future challenges[J]. Nanotechnology,2019,30(30):302002. doi: 10.1088/1361-6528/ab0fb2
    [5]
    XIA S, YANG B, ZHANG H, et al. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature[J]. Advanced Functional Materials,2021,31(28):2101168. doi: 10.1002/adfm.202101168
    [6]
    LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J]. Science Advances,2018,4(10):eaat5383. doi: 10.1126/sciadv.aat5383
    [7]
    TAN S J, YUE J, TIAN Y F, et al. In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries[J]. Energy Storage Materials,2021,39:186-193. doi: 10.1016/j.ensm.2021.04.020
    [8]
    杨富杰, 王亮, 阮文红, 等. 石墨烯基聚合物复合电解质的设计, 性能及其应用研究进展[J]. 复合材料学报, 2021, 38(3):680-697.

    YANG Fujie, WANG Liang, RUAN Wenhong, et al. Research progress on the design, properties and applications of graphene-based polymer composite electrolytes[J]. Acta Materiae Compositae Sinica,2021,38(3):680-697(in Chinese).
    [9]
    金英敏, 李栋, 贾政刚, 等. 用于全固态锂电池的有机-无机复合电解质[J]. 原子与分子物理学报, 2020, 37(6):958-973.

    JIN Yingmin, LI Dong, JIA Zhenggang, et al. Organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Journal of Atomic and Molecular Physics,2020,37(6):958-973(in Chinese).
    [10]
    YU X, MANTHIRAM A. A review of composite polymer-ceramic electrolytes for lithium batteries[J]. Energy Storage Materials,2021,34:282-300. doi: 10.1016/j.ensm.2020.10.006
    [11]
    KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy,2016,1(4):1-7. doi: 10.1038/nenergy.2016.30
    [12]
    LI J, ZHANG J, ZHAI H, et al. Rapid synthesis of garnet-type Li7La3Zr2O12 solid electrolyte with superior electrochemical performance[J]. Journal of the European Ceramic Society,2022,42(4):1568-1575. doi: 10.1016/j.jeurceramsoc.2021.11.028
    [13]
    温荣严, 高志浩, 门树林, 等. 聚偏氟乙烯基凝胶聚合物电解质的研究进展[J]. 储能科学与技术, 2021, 10(1):40-49. doi: 10.19799/j.cnki.2095-4239.2020.0234

    WEN Rongyan, GAO Zhihao, MEN Shulin, et al. Research progress on polyvinylidene fluoride-based gel polymer electrolytes[J]. Energy Storage Science and Technology,2021,10(1):40-49(in Chinese). doi: 10.19799/j.cnki.2095-4239.2020.0234
    [14]
    CROCE F, CURINI R, MARTINELLI A, et al. Physical and chemical properties of nanocomposite polymer electrolytes[J]. The Journal of Physical Chemistry B,1999,103(48):10632-10638. doi: 10.1021/jp992307u
    [15]
    许卓, 郑莉莉, 陈兵, 等. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6):2117-2126. doi: 10.19799/j.cnki.2095-4239.2021.0178

    XU Zhuo, ZHENG Lili, CHEN Bing, et al. Review of research on composite electrolytes for solid-state batteries[J]. Energy Storage Science and Technology,2021,10(6):2117-2126(in Chinese). doi: 10.19799/j.cnki.2095-4239.2021.0178
    [16]
    ZHANG B, LIN Z, DONG H, et al. Revealing cooperative Li-ion migration in Li1+xAlxTi2−x(PO4)3 solid state electrolytes with high Al doping[J]. Journal of Materials Chemistry A,2020,8(1):342-348. doi: 10.1039/C9TA09770H
    [17]
    LV R, KOU W, GUO S, et al. Preparing two-dimensional ordered Li0.33La0.557TiO3 crystal in interlayer channel of thin laminar inorganic solid-state electrolyte towards ultrafast Li+ transfer[J]. Angewandte Chemie International Edition,2022,61(7):e202114220. doi: 10.1002/anie.202114220
    [18]
    WANG Z, XU H, XUAN M, et al. From anti-perovskite to double anti-perovskite: Tuning lattice chemistry to achieve super-fast Li+ transport in cubic solid lithium halogen-chalcogenides[J]. Journal of Materials Chemistry A,2018,6(1):73-83. doi: 10.1039/C7TA08698A
    [19]
    BUSCHMANN H, DÖLLE J, BERENDTS S, et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”[J]. Physical Chemistry Chemical Physics,2011,13(43):19378-19392. doi: 10.1039/c1cp22108f
    [20]
    ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science,2018,11(8):1945-1976. doi: 10.1039/c8ee01053f
    [21]
    黄祯, 杨菁, 陈晓添, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4(1):1-18. doi: 10.3969/j.issn.2095-4239.2015.01.02

    HUANG Zhen, YANG Jing, CHEN Xiaotian, et al. Basic and applied research on inorganic solid electrolyte materials[J]. Energy Storage Science and Technology,2015,4(1):1-18(in Chinese). doi: 10.3969/j.issn.2095-4239.2015.01.02
    [22]
    ZHANG Q, CAO D, MA Y, et al. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials,2019,31(44):1901131. doi: 10.1002/adma.201901131
    [23]
    KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials,2011,10(9):682-686. doi: 10.1038/nmat3066
    [24]
    MURAMATSU H, HAYASHI A, OHTOMO T, et al. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics,2011,182(1):116-119. doi: 10.1016/j.ssi.2010.10.013
    [25]
    ZHU Y, HE X, MO Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces,2015,7(42):23685-23693.
    [26]
    FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials,2019,18(12):1278-1291. doi: 10.1038/s41563-019-0431-3
    [27]
    CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature,1998,394(6692):456-458. doi: 10.1038/28818
    [28]
    LI Y, ZHANG B, YUAN Q. A comparative study of long and short GRBs. II. A multiwavelength method to distinguish type II (massive star) and type I (compact star) GRBs[J]. The Astrophysical Journal,2020,897(2):154. doi: 10.3847/1538-4357/ab96b8
    [29]
    闫雅婧. 锂离子电池用固态电解质的研究现状与展望[J]. 无机盐工业, 2020, 52(7):22-25. doi: 10.11962/1006-4990.2019-0676

    YAN Yajing. Research status and prospect of solid electrolytes for lithium-ion batteries[J]. Inorganic Salt Industry,2020,52(7):22-25(in Chinese). doi: 10.11962/1006-4990.2019-0676
    [30]
    TAKEDA Y, YAMAMOTO O, IMANISHI N. Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes[J]. Electrochemistry,2016,84(4):210-218. doi: 10.5796/electrochemistry.84.210
    [31]
    ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: Advances and prospects[J]. Chemistry,2019,5(9):2326-2352. doi: 10.1016/j.chempr.2019.05.009
    [32]
    GUPTA S, VARSHNEY P K. Effect of plasticizer on the conductivity of carboxymethyl cellulose-based solid polymer electrolyte[J]. Polymer Bulletin,2019,76(12):6169-6178. doi: 10.1007/s00289-019-02714-1
    [33]
    FAN L Z, HE H, NAN C W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials,2021,6(11):1003-1019. doi: 10.1038/s41578-021-00320-0
    [34]
    ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials,2020,5(3):229-252. doi: 10.1038/s41578-019-0165-5
    [35]
    COSTA C M, LiZUNDIA E, LANCEROS-MÉNDEZ S. Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components[J]. Progress in Energy and Combustion Science,2020,79:100846. doi: 10.1016/j.pecs.2020.100846
    [36]
    HENDERSON W A, PASSERINI S. Ionic conductivity in crystalline-amorphous polymer electrolytes-P(EO)6:LiX phases[J]. Electrochemistry Communications,2003,5(7):575-578. doi: 10.1016/S1388-2481(03)00131-0
    [37]
    XUE S, LIU Y, LI Y, et al. Diffusion of lithium ions in amorphous and crystalline poly(ethylene oxide)3: LiCF3SO3 polymer electrolytes[J]. Electrochimica Acta,2017,235:122-128. doi: 10.1016/j.electacta.2017.03.083
    [38]
    贾婉卿, 孙歌, 姚诗余, 等. 锂离子电池中有机–无机复合固态电解质的研究进展[J]. 硅酸盐学报, 2022, 50(1):121-133. doi: 10.14062/j.issn.0454-5648.20210622

    JIA Wanqing, SUN Ge, YAO Shiyu, et al. Research progress of organic-inorganic composite solid-state electrolytes in lithium-ion batteries[J]. Journal of the Chinese Ceramic Society,2022,50(1):121-133(in Chinese). doi: 10.14062/j.issn.0454-5648.20210622
    [39]
    CARADANT L, VERDIER N, FORAN G, et al. Extrusion of polymer blend electrolytes for solid-state lithium batteries: A study of polar functional groups[J]. ACS Applied Polymer Materials,2021,3(12):6694-6704. doi: 10.1021/acsapm.1c01466
    [40]
    LI Z, GUO D, LI F, et al. Nerve network-inspired solid polymer electrolytes (NN-SPE) for fast and single-ion lithium conduction[J]. Energy Storage Materials,2022,49:575-582. doi: 10.1016/j.ensm.2022.05.003
    [41]
    ZHENG Y, LI X, LI C Y. A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery[J]. Energy Storage Materials,2020,29:42-51. doi: 10.1016/j.ensm.2020.04.002
    [42]
    DEVAUX D, GLÉ D, PHAN T N T, et al. Optimization of block copolymer electrolytes for lithium metal batteries[J]. Chemistry of Materials,2015,27(13):4682-4692. doi: 10.1021/acs.chemmater.5b01273
    [43]
    LIU F, LI T, YANG Y, et al. Investigation on the copolymer electrolyte of poly(1, 3-dioxolane-co-formaldehyde)[J]. Macromolecular Rapid Communications,2020,41(9):2000047. doi: 10.1002/marc.202000047
    [44]
    DIRICAN M, YAN C, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Materials Science and Engineering: R: Reports,2019,136:27-46. doi: 10.1016/j.mser.2018.10.004
    [45]
    AO X, WANG X, TAN J, et al. Nanocomposite with fast Li+ conducting percolation network: Solid polymer electrolyte with Li+ non-conducting filler[J]. Nano Energy,2021,79:105475. doi: 10.1016/j.nanoen.2020.105475
    [46]
    ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces,2018,10(4):4113-4120. doi: 10.1021/acsami.7b17301
    [47]
    LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: Case of PEO:Ga-LLZO composites[J]. ACS Applied Materials & Interfaces,2018,11(1):784-791. doi: 10.1021/acsami.8b17279
    [48]
    CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy,2018,46:176-184. doi: 10.1016/j.nanoen.2017.12.037
    [49]
    FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer,1973,14(11):589. doi: 10.1016/0032-3861(73)90146-8
    [50]
    WANG Z, HUANG B, HUANG H, et al. Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy[J]. Electrochimica Acta,1996,41(9):1443-1446. doi: 10.1016/0013-4686(95)00392-4
    [51]
    CAZZANELLI E, MARIOTTO G, APPETECCHI G B, et al. Study of ion-molecule interaction in poly(methylmethacrylate) based gel electrolytes by raman spectroscopy[J]. Electrochimica Acta,1995,40(13-14):2379-2382. doi: 10.1016/0013-4686(95)00198-N
    [52]
    YUE H, LI J, WANG Q, et al. Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-tempera-ture solid-state lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering,2018,6(1):268-274. doi: 10.1021/acssuschemeng.7b02401
    [53]
    KIMURA K, YAJIMA M, TOMINAGA Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J]. Electrochemistry Communications,2016,66:46-48. doi: 10.1016/j.elecom.2016.02.022
    [54]
    LIU H, MULDERRIG L, HALLINAN JR D, et al. Lignin-based solid polymer electrolytes: Lignin-graft-poly(ethylene glycol)[J]. Macromolecular Rapid Communications,2021,42(3):2000428. doi: 10.1002/marc.202000428
    [55]
    SUKESHINI A M, NISHIMOTO A, WATANABE M. Transport and electrochemical characterization of plasticized poly(vinyl chloride) solid electrolytes[J]. Solid State Ionics,1996,86:385-393.
    [56]
    SABEL V F, MOHAMED R, ADNANE B, et al. Protic ionic liquids/poly(vinylidene fluoride) composite membranes for fuel cell application[J]. Journal of Energy Chemistry,2021,53(2):197-207.
    [57]
    SAIKIA D, WU H Y, PAN Y C, et al. Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVDF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li-ion batteries[J]. Journal of Power Sources,2011,196(5):2826-2834. doi: 10.1016/j.jpowsour.2010.10.096
    [58]
    GONÇALVES R, MIRANDA D, ALMEIDA A M, et al. Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide/poly(vinylidene fluoride-co-hexafluoropropylene) for safer rechargeable lithium-ion batteries[J]. Sustainable Materials and Technologies,2019,21:e00104. doi: 10.1016/j.susmat.2019.e00104
    [59]
    BESHAHWURED S L, WU Y S, TRUONG T B T, et al. A modified trilayer membrane for suppressing Li dendrite growth in all-solid-state lithium-metal batteries[J]. Chemical Engineering Journal,2021,426:131850. doi: 10.1016/j.cej.2021.131850
    [60]
    LI Q, CHEN J, FAN L, et al. Progress in electrolytes for rechargeable Li-based batteries and beyond[J]. Green Energy & Environment,2016,1(1):18-42.
    [61]
    ZHU P, YAN C, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A,2018,6(10):4279-4285. doi: 10.1039/C7TA10517G
    [62]
    HU P, CHAI J, DUAN Y, et al. Progress in nitrile-based polymer electrolytes for high performance lithium batteries[J]. Journal of Materials Chemistry A,2016,4(26):10070-10083. doi: 10.1039/C6TA02907H
    [63]
    董甜甜, 张建军, 柴敬超, 等. 聚碳酸酯基固态聚合物电解质的研究进展[J]. 高分子学报, 2017(6):906-921. doi: 10.11777/j.issn1000-3304.2017.16333

    DONG Tiantian, ZHANG Jianjun, CHAI Jingchao, et al. Research progress of polycarbonate-based solid polymer electrolytes[J]. Acta Polymerica Sinica,2017(6):906-921(in Chinese). doi: 10.11777/j.issn1000-3304.2017.16333
    [64]
    赵莉, 杜蘅, 刘虎, 等. 纳米 SiO2 微球在 PMMA 凝胶聚合物电解质中的尺寸效应及其在全固态电致变色器件中的应用[J]. 复合材料学报, 2021, 38(5):1446-1454.

    ZHAO Li, DU Heng, LIU Hu, et al. Size effect of nano-SiO2 microspheres in PMMA gel polymer electrolyte and its application in all-solid-state electrochromic devices[J]. Acta Materiae Compositae Sinica,2021,38(5):1446-1454(in Chinese).
    [65]
    KOBAYASHI K, PAGOT G, KETI V, et al. Effect of plasticizer on the ion-conductive and dielectric behavior of poly(ethylene carbonate)-based Li electrolytes[J]. Polymer Journal,2020,53(1):149-155.
    [66]
    CHAI J, LIU Z, MA J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science,2017,4(2):1600377. doi: 10.1002/advs.201600377
    [67]
    ZHENG F, LI H T, ZHENG Y Z, et al. Trimethyl phosphate-enhanced polyvinyl carbonate polymer electrolyte with improved interfacial stability for solid-state lithium battery[J]. Rare Metals,2022,41(6):1889-1898. doi: 10.1007/s12598-021-01928-5
    [68]
    GAO Z, WEN R, DENG H, et al. Composite membrane of poly(vinylidene fluoride) and 2D Ni(OH)2 nanosheets for high-performance lithium-ion battery[J]. ACS Applied Polymer Materials,2022,4(2):960-970. doi: 10.1021/acsapm.1c01413
    [69]
    苏月, 刘旭华, 曾芳磊, 等. 聚偏氟乙烯/聚偏氟乙烯磺酸锂/锂盐复合固态电解质的制备及其性能[J]. 储能科学与技术, 2021, 10(6):2069. doi: 10.19799/j.cnki.2095-4239.2021.0160

    SU Yue, LIU Xuhua, ZENG Fanglei, et al. Preparation and properties of polyvinylidene fluoride/lithium polyvinylidene fluoride sulfonate/lithium salt composite solid electrolyte[J]. Energy Storage Science and Technology,2021,10(6):2069(in Chinese). doi: 10.19799/j.cnki.2095-4239.2021.0160
    [70]
    LI S, LI N, SUN C. A flexible three-dimensional composite nanofiber enhanced quasi-solid electrolyte for high-performance lithium metal batteries[J]. Inorganic Chemistry Frontiers,2021,8(2):361-367. doi: 10.1039/D0QI01159B
    [71]
    LIU W, YI C, LI L, et al. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries[J]. Angewandte Chemie,2021,133(23):13041-13050. doi: 10.1002/ange.202101537
    [72]
    王星星, 宋子钰, 吴浩, 等. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4):1226-1235. doi: 10.19799/j.cnki.2095-4239.2022.0038

    WANG Xingxing, SONG Ziyu, WU Hao, et al. Research progress of conductive lithium salts in solid polymer electrolytes[J]. Energy Storage Science and Technology,2022,11(4):1226-1235(in Chinese). doi: 10.19799/j.cnki.2095-4239.2022.0038
    [73]
    ZHANG S S, XU K, JOW T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochimica Acta,2006,51(8-9):1636-1640. doi: 10.1016/j.electacta.2005.02.137
    [74]
    LESTARININGSIH T, SABRINA Q, RATRI C R, et al. Structure, thermal and electrical properties of PVDF-HFP/LiBOB solid polymer electrolyte[J]. Journal of Physics Conference Series,2019,1191(1):012026. doi: 10.1088/1742-6596/1191/1/012026
    [75]
    XU K, ZHANG S, JOW T R, et al. LiBOB as salt for lithium-ion batteries: A possible solution for high temperature operation[J]. Electrochemical and Solid-State Letters,2001,5(1):A26.
    [76]
    ULUTAŞ K, YAHSI U, DELIGÖZ H, et al. Dielectric properties and conductivity of PVDF-co-HFP/LiClO4 polymer electrolytes[J]. Canadian Journal of Physics,2018,96(7):786-791. doi: 10.1139/cjp-2017-0678
    [77]
    赵丹妮, 田芳禺, 于雅琳, 等. 锂离子电解液/环氧乙烯基酯树脂固态电解质的制备与性能[J]. 复合材料学报, 2018, 35(2):253-259.

    ZHAO Danni, TIAN Fangyu, YU Yalin, et al. Preparation and properties of lithium ion electrolyte/epoxy vinyl ester resin solid electrolyte[J]. Acta Materiae Compositae Sinica,2018,35(2):253-259(in Chinese).
    [78]
    ESHETU G G, JUDEZ X, LI C, et al. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion’s chemistry-induced anomalous synergistic effect[J]. Journal of the American Chemical Society,2018,140(31):9921-9933. doi: 10.1021/jacs.8b04612
    [79]
    RAVI M, KIM S, RAN F, et al. Hybrid gel polymer electrolyte based on 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl) imide for flexible and shape-variant lithium secondary batteries[J]. Journal of Membrane Science,2021,621:119018. doi: 10.1016/j.memsci.2020.119018
    [80]
    TAO S D, LI J, HU R, et al. 3Li2S-2MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries[J]. Applied Surface Science,2021,536:147794. doi: 10.1016/j.apsusc.2020.147794
    [81]
    PAN K, ZHANG L, QIAN W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Advanced Materials,2020,32(17):2000399. doi: 10.1002/adma.202000399
    [82]
    ZHAN H, WU M, WANG R, et al. Excellent performances of composite polymer electrolytes with porous vinyl-functionalized SiO2 nanoparticles for lithium metal batteries[J]. Polymers,2021,13(15):2468. doi: 10.3390/polym13152468
    [83]
    DIDWAL P N, SINGHBABU Y N, VERMA R, et al. An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries[J]. Energy Storage Materials,2021,37:476-490. doi: 10.1016/j.ensm.2021.02.034
    [84]
    ZHOU D, LIU R, HE Y B, et al. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life[J]. Advanced Energy Materials,2016,6(7):1502214. doi: 10.1002/aenm.201502214
    [85]
    CHOUDHURY S, MANGAL R, AGRAWAL A, et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nature Communications,2015,6:10101. doi: 10.1038/ncomms10101
    [86]
    XU H, CHIEN P H, SHI J, et al. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide)[J]. Proceedings of the National Academy of Sciences,2019,116(38):18815-18821. doi: 10.1073/pnas.1907507116
    [87]
    NOURISABET T, AVAL H J, SHIDPOUR R, et al. Fabrication of a PEO-PVDF blend based polymer composite electrolyte with extremely high ionic conductivity via the addition of LLTO nanowires[J]. Solid State Ionics,2022,377:115885. doi: 10.1016/j.ssi.2022.115885
    [88]
    WAN Z, LEI D, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials,2019,29(1):1805301. doi: 10.1002/adfm.201805301
    [89]
    LIU W, LEE S W, LIN D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy,2017,2(5):1-7.
    [90]
    LI X, CHEN W, QIAN Q, et al. Electrospinning-based strategies for battery materials[J]. Advanced Energy Materials,2021,11(2):2000845. doi: 10.1002/aenm.202000845
    [91]
    PAN P, ZHANG M, CHENG Z, et al. Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable all-solid-state lithium metal batteries[J]. Energy Storage Materials,2022,47:279-287. doi: 10.1016/j.ensm.2022.02.018
    [92]
    TANG W, TANG S, ZHANG C, et al. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets[J]. Advanced Energy Materials,2018,8(24):1800866. doi: 10.1002/aenm.201800866
    [93]
    ZHAI P, PENG N, SUN Z, et al. Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium-sulfur battery[J]. Journal of Materials Chemistry A,2020,8(44):23344-23353. doi: 10.1039/D0TA07630A
    [94]
    PEI X, MU J, HONH J, et al. Solution-processed 2D hectorite nanolayers for high-efficient composite solid-state electrolyte[J]. Applied Clay Science,2022,216:106363. doi: 10.1016/j.clay.2021.106363
    [95]
    CHENG M, JIANG Y. 3D-printed solid-state electrolytes for electrochemical energy storage devices[J]. Journal of Materials Research,2021,36:4547-4564.
    [96]
    CAO L, WU H, YANG P, et al. Graphene oxide-based solid electrolytes with 3D prepercolating pathways for efficient proton transport[J]. Advanced Functional Materials,2018,28(50):1804944. doi: 10.1002/adfm.201804944
    [97]
    WANG J, YANG J, SHEN L, et al. Synergistic effects of plasticizer and 3 framework toward high-performance solid polymer electrolyte for room-temperature solid-state lithium batteries[J]. ACS Applied Energy Materials,2021,4(4):4129-4137. doi: 10.1021/acsaem.1c00468
    [98]
    LI Z, SHA W X, GUO X. Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability[J]. ACS Applied Materials & Interfaces,2019,11(30):26920-26927.
    [99]
    ZHANG M, PAN P, CHENG Z, et al. Flexible, mechanically robust, solid-state electrolyte membrane with conducting oxide-enhanced 3D nanofiber networks for lithium batteries[J]. Nano Letters,2021,21(16):7070-7078. doi: 10.1021/acs.nanolett.1c01704
    [100]
    FAN R, LIAO W, FAN S, et al. Regulating interfacial Li-ion transport via an integrated corrugated 3D skeleton in solid composite electrolyte for all-solid-state lithium metal batteries[J]. Advanced Science,2022,9(8):2104506. doi: 10.1002/advs.202104506
    [101]
    LI H, LIU W, YANG X, et al. Fluoroethylene carbonate-Li-ion enabling composite solid-state electrolyte and lithium metal interface self-healing for dendrite-free lithium deposition[J]. Chemical Engineering Journal,2021,408:127254. doi: 10.1016/j.cej.2020.127254
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (2104) PDF downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return