Volume 40 Issue 7
Apr.  2023
Turn off MathJax
Article Contents
YIN Guansheng, ZHANG Jintao, SHI Minghui, et al. Thermal properties of phase change thermal storage foam concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4246-4259. doi: 10.13801/j.cnki.fhclxb.20221024.005
Citation: YIN Guansheng, ZHANG Jintao, SHI Minghui, et al. Thermal properties of phase change thermal storage foam concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4246-4259. doi: 10.13801/j.cnki.fhclxb.20221024.005

Thermal properties of phase change thermal storage foam concrete

doi: 10.13801/j.cnki.fhclxb.20221024.005
Funds:  Xi'an City Construction Technology Project (SZJJ2019-18); Shaanxi Province Housing and Urban-Rural Construction Science and Technology Project (2015-k95)
  • Received Date: 2022-08-01
  • Accepted Date: 2022-10-16
  • Rev Recd Date: 2022-10-11
  • Available Online: 2022-10-24
  • Publish Date: 2023-07-15
  • In order to seek building materials with energy-saving effect, a phase change thermal storage foam concrete with thermal storage and temperature regulation capabilities was prepared by means of experimental design and numerical simulation. Its dry density grade is 700 kg/m3, the content of shaped composite phase change material accounted for 0%, 3%, 6%, 9%, 12% and 15% of the mass of the cementitious material, respectively. The influence of shaped composite phase change materials on the dry density, compressive strength and thermal properties of foam concrete was explored, and the finite element software ABAQUS was used to establish the wall model of phase change thermal storage foam concrete, and the heat storage and temperature regulating performance of phase change thermal storage foam concrete wall was studied. The experiment results show that the dry density, compressive strength and thermal conductivity of the phase change thermal storage foam concrete gradually decrease with the increase of the content of the shaped composite phase change material. When the content of the shaped composite phase change material is 15%, the dry density, compressive strength and thermal conductivity reach the minimum values, which are 661 kg/m3, 2.18 MPa and 0.144 W/(m·K), respectively. With the increase of the content of shaped composite phase change material, the phase change temperature, phase change latent heat and specific heat capacity of foam concrete also increase. When the content of shaped composite phase change material is 15%, the phase change temperature is 24.83℃, the phase change latent heat is 12.320 J/g, and the specific heat capacity is 1462 J/(kg·℃). The finite element simulation results show that when the content of the shaped composite phase change material is 15%, the temperature fluctuation range of the inner surface of the phase change thermal storage foam concrete wall is 25.37-26.57℃, and the maximum temperature difference is 1.20℃, which is 0.46℃ lower than that of pure foam concrete, the time to the highest temperature is delayed by 1.83 h, and the time to reach the lowest temperature is delayed by 1.16 h compared with the pure foam concrete wall. When the phase change thermal storage foam concrete is arranged inside the wall, its thermal storage and temperature regulation effect are the best.

     

  • loading
  • [1]
    吴陶俊. 多元复合相变材料的制备及其在建筑节能中的应用研究[D]. 沈阳: 沈阳建筑大学, 2015.

    WU Taojun. Study on preparation of multiple composite phase change materials and the applications in building energy saving[D]. Shenyang: Shenyang Jianzhu University, 2015(in Chinese).
    [2]
    LIU L, CHEN J, QU Y, et al. A foamed cement blocks with paraffin/expanded graphite composite phase change solar thermal absorption material[J]. Solar Energy Materials and Solar Cells,2019,200:110038. doi: 10.1016/j.solmat.2019.110038
    [3]
    李志. 硅藻土基相变混凝土的制备及力学与热工性能研究[D]. 泰安: 山东农业大学, 2021.

    LI Zhi. Study on preparation and mechanical and thermal properties of diatomite based phase change concrete[D]. Taian: Shandong Agricultural University, 2021(in Chinese).
    [4]
    WANG P, LIU Z, XI S, et al. Experiment and numerical simulation of an adaptive building roof combining variable transparency shape-stabilized PCM[J]. Energy and Buildings,2022,263:112030. doi: 10.1016/j.enbuild.2022.112030
    [5]
    黄海静, 任毅迪, 杨雨飞, 等. 相变储能技术在被动式太阳能建筑中的应用方法 以张家口地区为例[J]. 室内设计与装修, 2022(2):122-123. doi: 10.3969/j.issn.1005-7374.2022.02.027

    HUANG Haijing, REN Yidi, YANG Yufei, et al. Application of phase change energy storage technology inpassive solar buildings, a case study of Zhangjiakou[J]. Interior Design Construction,2022(2):122-123(in Chinese). doi: 10.3969/j.issn.1005-7374.2022.02.027
    [6]
    DONG Y, LIU H, ZHANG N, et al. Photo-to-thermal conversion and energy storage of polyethylene glycol/copper sulfide composite PCMs[J]. Solar Energy Materials and Solar Cells,2022,238:111583. doi: 10.1016/j.solmat.2022.111583
    [7]
    KIM H G, QUDOOS A, JEON I K, et al. Assessment of PCM/SiC-based composite aggregate in concrete: Energy storage performance[J]. Construction and Building Materials,2020,258:119637. doi: 10.1016/j.conbuildmat.2020.119637
    [8]
    GHOLAMIBOZANJANI G, FARID M. Application of an active PCM storage system into a building for heating/cooling load reduction[J]. Energy,2020,210:118572. doi: 10.1016/j.energy.2020.118572
    [9]
    SUKONTASUKKUL P, UTHAICHOTIRAT P, SANGPET T, et al. Thermal properties of lightweight concrete incorporating high contents of phase change materials[J]. Construction and Building Materials,2019,207:431-439. doi: 10.1016/j.conbuildmat.2019.02.152
    [10]
    HEKIMOČLU G, NAS M, OUIKHALFAN M, et al. Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: Thermal energy storage and mechanical properties[J]. Energy,2021,219:119588. doi: 10.1016/j.energy.2020.119588
    [11]
    孟多, 党昕, 王安琪, 等. 石蜡基相变蓄热板的热性能及建筑控温效果研究[J]. 新型建筑材料, 2021, 48(11):82-87, 111.

    MENG Duo, DANG Xin, WANG Anqi, et al. Thermal properties and building temperature control effect of the paraffin based phase change thermal energy storage plate[J]. New Building Materials,2021,48(11):82-87, 111(in Chinese).
    [12]
    ZHANG J, GUAN X, SONG X, et al. Preparation and properties of gypsum based energy storage materials with capric acid-palmitic acid/expanded perlite composite PCM[J]. Energy and Buildings,2015,92:155-160. doi: 10.1016/j.enbuild.2015.01.063
    [13]
    EDDHAHAK-OUNI A, DRISSI S, COLIN J, et al. Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated phase change materials (PCMs)[J]. Applied Thermal Engineering,2014,64(1-2):32-39. doi: 10.1016/j.applthermaleng.2013.11.050
    [14]
    AL-ABSI Z A, HAFIZAL M I M, ISMAIL M, et al. Properties of PCM-based composites developed for the exterior finishes of building walls[J]. Case Studies in Construction Materials,2022,16:e00960. doi: 0.1016/j.cscm.2022.e00960
    [15]
    JEONG S G, WI S, CHANG S J, et al. An experimental study on applying organic PCMs to gypsum-cement board for improving thermal performance of buildings in different climates[J]. Energy and Buildings,2019,190:183-194. doi: 10.1016/j.enbuild.2019.02.037
    [16]
    周卫兵, 韦钧, 李康, 等. 掺月桂酸-硬脂酸/膨胀蛭石复合相变材料建筑砂浆的制备和性能表征[J]. 储能科学与技术, 2019, 8(1):92-97. doi: 10.12028/j.issn.2095-4239.2018.0126

    ZHOU Weibing, WEI Jun, LI Kang, et al. Preparation and characterization of building mortar with lauric acid-stearic acid/expanded vermiculite composite phase change material[J]. Energy Storage Science and Technology,2019,8(1):92-97(in Chinese). doi: 10.12028/j.issn.2095-4239.2018.0126
    [17]
    DU Y, LIU P, QUAN X, et al. Characterization and cooling effect of a novel cement-based composite phase change material[J]. Solar Energy,2020,208:573-582. doi: 10.1016/j.solener.2020.07.083
    [18]
    中华人民共和国住房与城乡建设部. 泡沫混凝土: JG/T 266—2011[S]. 北京: 中国标准出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Foamed concrete: JG/T 266—2011[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [19]
    中华人民共和国国家质量监督检验检疫总局. 绝热材料稳态热阻及有关特性的测定 防护热板法: GB/T 10294—2008[S]. 北京: 中国建筑材料工业联合会, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Thermal insulation—Determination of steady-state thermal resistance and related properties—Guarded hot plate apparatus: GB/T 10294—2008[S]. Beijing: China Building Materials Federation, 2008(in Chinese).
    [20]
    DEHDEZI P K, HALL M R, DAWSON A R, et al. Thermal, mechanical and microstructural analysis of concrete containing micro-encapsulated phase change materials[J]. International Journal of Pavement Engineering,2013,14(5):449-462. doi: 10.1080/10298436.2012.716837
    [21]
    陆江, 瞿铭良, 田帅奇. 相变微胶囊/加气混凝土复合材料的热工性能[J]. 建筑材料学报, 2020, 23(2):341-346, 363.

    LU Jiang, QU Mingliang, TIAN Shuaiqi. Thermal performances of micro-encapsulated phase change materials/aerated concrete composite materials[J]. Journal of Building Materials,2020,23(2):341-346, 363(in Chinese).
    [22]
    侯文烁. 多腔结构相变材料微胶囊的蓄热和释热特性研究[D]. 石家庄: 石家庄铁道大学, 2014.

    HOU Wenshuo. Research of heat storage and heat release properties of microencapsulated phase change materials with multi-cavity structure[D]. Shijiazhuang: Shijiazhuang Railway University, 2014(in Chinese).
    [23]
    席丽敏. 石蜡相变胶囊及其储能墙体传热过程的数值模拟[D]. 北京: 北京林业大学, 2020.

    XI Limin. Numerical simulation of heat transfer process of paraffin phase change capsule and its energy storage wall[D]. Beijing: Beijing Forestry University, 2020(in Chinese).
    [24]
    中华人民共和国住房和城乡建设部. 民用建筑热工设计规范: GB 50176—2016[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for thermal engineering design of civil buildings: GB 50176—2016[S]. Beijing: China Architecture and Building Press, 2016(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(5)

    Article Metrics

    Article views (562) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return