Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHANG Bo, HU Xili, QU Lijun. Microfluidic spinning technology and flexible wearable application of multi-structure microfluidic fiber[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2536-2549. doi: 10.13801/j.cnki.fhclxb.20221019.002
Citation: ZHANG Bo, HU Xili, QU Lijun. Microfluidic spinning technology and flexible wearable application of multi-structure microfluidic fiber[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2536-2549. doi: 10.13801/j.cnki.fhclxb.20221019.002

Microfluidic spinning technology and flexible wearable application of multi-structure microfluidic fiber

doi: 10.13801/j.cnki.fhclxb.20221019.002
Funds:  National Natural Science Foundation of China (52103056); Shandong Province Key Research and Development Plan (Major Scientific and Technological Innovation Projects) (2019 JZZY010340)
  • Received Date: 2022-07-29
  • Accepted Date: 2022-10-16
  • Rev Recd Date: 2022-09-24
  • Available Online: 2022-10-19
  • Publish Date: 2023-05-15
  • Microfluidic spinning technology combines the advantages of microfluidic technology and spinning technology, and can design and fabricate complex microfibers that are difficult to be realized by conventional spinning technology. Through the precise regulation of micro-scale fluid flow and the use of laminar flow characteristics of the fluid in the micro-channel, microfluidic spinning technology has a wide range of applications in biomedicine, flexible electronics, analytical chemistry and other fields. In this paper, the spinning device and curing mechanism of microfluidic spinning technology are systematically introduced, and the preparation methods, structural characteristics and applications of multi-structure fibers such as solid/porous fiber, hollow/core-shell fiber, Janus/two-component/multi-component fiber, spindle fiber and spiral fiber are reviewed. Finally, the advantages and disadvantages of microfluidic spinning technology in the preparation of microfibers are analyzed, and the application prospect of microfluidic spinning technology is forecasted.

     

  • loading
  • [1]
    ILLATH K, KAR S, GUPTA P, et al. Microfluidic nanomaterials: From synthesis to biomedical applications[J]. Biomaterials,2022,280:121247. doi: 10.1016/j.biomaterials.2021.121247
    [2]
    AYKAR S S, ALIMORADI N, TAGHAVIMEHR M, et al. Microfluidic seeding of cells on the inner surface of alginate hollow microfibers[J]. Advanced Healthcare Materials,2022,11(11):2102701.
    [3]
    JIAO J, WANG F, HUANG J J, et al. Microfluidic hollow fiber with improved stiffness repairs peripheral nerve injury through non-invasive electromagnetic induction and controlled release of NGF[J]. Chemical Engineering Journal,2021,426:131826. doi: 10.1016/j.cej.2021.131826
    [4]
    GUO J, YU Y, CAI L, et al. Microfluidics for flexible electronics[J]. Materials Today,2021,44:105-135. doi: 10.1016/j.mattod.2020.08.017
    [5]
    FILIPPI M, BUCHNER T, YASA O, et al. Microfluidic tissue engineering and bio-actuation[J]. Advanced Materials,2022,34(23):2108427.
    [6]
    LI Z, ZHANG X, OUYANG J, et al. Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis[J]. Bioactive Materials,2021,6(11):4053-4064. doi: 10.1016/j.bioactmat.2021.04.014
    [7]
    NOVIANA E, OZER T, CARRELL C S, et al. Microfluidic paper-based analytical devices: From design to applications[J]. Chemical Reviews,2021,121(19):11835-11885. doi: 10.1021/acs.chemrev.0c01335
    [8]
    BOGNITZKI M, CZADO W, FRESE T, et al. Nanostructured fibers via electrospinning[J]. Advanced Materials,2001,13(1):70-72. doi: 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H
    [9]
    YU Y, WEI W, WANG Y, et al. Simple spinning of heterogeneous hollow microfibers on chip[J]. Advanced Materials,2016,28(31):6649-6655. doi: 10.1002/adma.201601504
    [10]
    LYU H, LIU J, QIU S, et al. Carbon composite spun fibers with in situ formed multicomponent nanoparticles for a lithium-ion battery anode with enhanced performance[J]. Journal of Materials Chemistry A,2016,4(25):9881-9889. doi: 10.1039/C6TA02083F
    [11]
    PINTO T V, FERNANDES D M, GUEDES A, et al. Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology[J]. Chemical Engineering Journal,2018,350:856-866. doi: 10.1016/j.cej.2018.05.155
    [12]
    KIM Y S, LU J, SHIH B, et al. Scalable manufacturing of solderable and stretchable physiologic sensing systems[J]. Advanced Materials,2017,29(39):1701312. doi: 10.1002/adma.201701312
    [13]
    JEONG W, KIM J, KIM S, et al. Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes[J]. Lab Chip,2004,4(6):576-580. doi: 10.1039/B411249K
    [14]
    YU Y, SHANG L, GUO J, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nature Protocols,2018,13(11):2557-2579. doi: 10.1038/s41596-018-0051-4
    [15]
    AMINIAN M, BERNARDI F, CAMASSA R, et al. How boundaries shape chemical delivery in microfluidics[J]. Science,2016,354(6317):1252-1256. doi: 10.1126/science.aag0532
    [16]
    VERA D, GARCÍA-DÍAZ M, TORRAS N, et al. Engineering tissue barrier models on hydrogel microfluidic platforms[J]. ACS Applied Materials Interfaces,2021,13(12):13920-13933.
    [17]
    SOLLIER E, MURRAY C, MAODDI P, et al. Rapid prototyping polymers for microfluidic devices and high pressure injections[J]. Lab on a Chip,2011,11(22):3752-3765. doi: 10.1039/c1lc20514e
    [18]
    WHITESIDES G M. The origins and the future of microfluidics[J]. Nature,2006,442(7101):368-373. doi: 10.1038/nature05058
    [19]
    REYES D R, IOSSIFIDIS D, AUROUX P A, et al. Micro total analysis systems. 1. Introduction, theory and technology[J]. Analytical Chemistry,2002,74(12):2623-2636. doi: 10.1021/ac0202435
    [20]
    MCDONALD J C, WHITESIDES G M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices[J]. Accounts of Chemical Research,2002,35(7):491-499. doi: 10.1021/ar010110q
    [21]
    REN K, ZHOU J, WU H. Materials for microfluidic chip fabrication[J]. Accounts of Chemical Research,2013,46(11):2396-2406. doi: 10.1021/ar300314s
    [22]
    KARA A, VASSILIADOU A, ONGOREN B, et al. Engineering 3D printed microfluidic chips for the fabrication of nanomedicines[J]. Pharmaceutics,2021,13(12):2134. doi: 10.3390/pharmaceutics13122134
    [23]
    ACHILLE C, PARRA-CABRERA C, DOCHY R, et al. Microfluidic devices: 3D printing of monolithic capillarity-driven microfluidic devices for diagnostics[J]. Advanced Materials,2021,33(25):2170192. doi: 10.1002/adma.202170192
    [24]
    SUGIOKA K, CHENG Y. Femtosecond laser processing for optofluidic fabrication[J]. Lab on a Chip,2012,12(19):3576-3589. doi: 10.1039/c2lc40366h
    [25]
    ABGRALL P, GUÉ A M. Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem—A review[J]. Journal of Micromechanics and Microengineering,2007,17(5):R15-R49. doi: 10.1088/0960-1317/17/5/R01
    [26]
    MCDONALD J C, DUFFY D C, ANDERSON J R, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane)[J]. Electrophoresis,2000,21(1):27-40. doi: 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
    [27]
    QIN X, LIU J, ZHANG Z, et al. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives[J]. TrAC Trends in Analytical Chemistry,2021,143:116371. doi: 10.1016/j.trac.2021.116371
    [28]
    NUNES J K, TSAI S S H, WAN J, et al. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis[J]. Journal of Physics D-Applied Physics, 2013, 46(11): 114002.
    [29]
    CASADEVALL I, SOLVAS X, DEMELLO A. Droplet microfluidics: Recent developments and future applications[J]. Chemical Communications,2011,47(7):1936-1942. doi: 10.1039/C0CC02474K
    [30]
    DU X Y, LI Q, WU G, et al. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology[J]. Advanced Materials,2019,31(52):1903733. doi: 10.1002/adma.201903733
    [31]
    JUN Y, KANG E, CHAE S, et al. Microfluidic spinning of micro- and nano-scale fibers for tissue engineering[J]. Lab Chip,2014,14(13):2145-2160. doi: 10.1039/C3LC51414E
    [32]
    DANIELE M A, RADOM K, LIGLER F S, et al. Microfluidic fabrication of multiaxial microvessels via hydrodynamic shaping[J]. RSC Advances,2014,4(45):23440-23446. doi: 10.1039/C4RA03667K
    [33]
    HU M, DENG R, SCHUMACHER K M, et al. Hydrodynamic spinning of hydrogel fibers[J]. Biomaterials,2010,31(5):863-869. doi: 10.1016/j.biomaterials.2009.10.002
    [34]
    HOU L, JIANG H, LEE D. Bubble-filled silica microfibers from multiphasic flows for lightweight composite fabrication[J]. Chemical Engineering Journal,2016,288:539-545. doi: 10.1016/j.cej.2015.12.014
    [35]
    WU F, JU X J, HE X H, et al. A novel synthetic microfiber with controllable size for cell encapsulation and culture[J]. Journal of Materials Chemistry B,2016,4(14):2455-2465. doi: 10.1039/C6TB00209A
    [36]
    LEE B R, LEE K H, KANG E, et al. Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers[J]. Biomicrofluidics,2011,5(2):022208. doi: 10.1063/1.3576903
    [37]
    LU M, SHARIFI F, HASHEMI N N, et al. Fluid-induced alignment of carbon nanofibers in polymer fibers[J]. Macromolecular Materials and Engineering,2017,302(7):1600544. doi: 10.1002/mame.201600544
    [38]
    CHEN Q L, WU X, CHENG H, et al. Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors[J]. Nanoscale Advances,2019,1(9):3614-3620. doi: 10.1039/C9NA00181F
    [39]
    GUAN T, SHEN S, CHENG Z, et al. Microfluidic-assembled hierarchical macro-microporous graphene fabrics towards high-performance robust supercapacitors[J]. Chemical Engineering Journal,2022,440:135878. doi: 10.1016/j.cej.2022.135878
    [40]
    PAN H, WANG D, PENG Q, et al. High-performance microsupercapacitors based on bioinspired graphene microfibers[J]. ACS Applied Materials & Interfaces,2018,10(12):10157-10164.
    [41]
    WU G, TAN P, WU X, et al. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes[J]. Advanced Functional Materials,2017,27(36):1702493. doi: 10.1002/adfm.201702493
    [42]
    GUO J, YU Y, ZHANG D, et al. Morphological hydrogel microfibers with MXene encapsulation for electronic skin[J]. Research,2021,2021:7065907.
    [43]
    CHOI C H, YI H, HWANG S, et al. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow[J]. Lab on a Chip,2011,11(8):1477-1483. doi: 10.1039/c0lc00711k
    [44]
    TANG M J, WANG W, LI Z L, et al. Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures[J]. Industrial & Engineering Chemistry Research,2018,57(29):9430-9438.
    [45]
    GUO J, YU Y, WANG H, et al. Conductive polymer hydrogel microfibers from multiflow microfluidics[J]. Small,2019,15(15):1805162. doi: 10.1002/smll.201805162
    [46]
    GUO J, YU Y, SUN L, et al. Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor[J]. Chemical Engineering Journal,2020,397:125517. doi: 10.1016/j.cej.2020.125517
    [47]
    YU Y, GUO J, MA B, et al. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics[J]. Science Bulletin,2020,65(20):1752-1759. doi: 10.1016/j.scib.2020.06.002
    [48]
    MENG J, WU G, WU X, et al. Microfluidic-architected nanoarrays/porous core-shell fibers toward robust micro-energy-storage[J]. Advanced Science,2020,7(1):1901931. doi: 10.1002/advs.201901931
    [49]
    ZHAO J, ZHU J, YU N, et al. Fabrication of oriented carbon nanotube-alginate microfibers using a microfluidic device[J]. Functional Materials Letters, 2019, 12(6): 1940002.
    [50]
    ZHOU M, GONG J, MA J. Continuous fabrication of near-infrared light responsive bilayer hydrogel fibers based on microfluidic spinning[J]. e-Polymers,2019,19(1):215-224. doi: 10.1515/epoly-2019-0022
    [51]
    LI Q, YUAN Z, ZHANG C, et al. Tough, highly oriented, super thermal insulating regenerated all-cellulose sponge-aerogel fibers integrating a graded aligned nanostructure[J]. Nano Letters, 2022, 22(9): 3516-3524.
    [52]
    PENG L, LIU Y, HUANG J, et al. Microfluidic fabrication of highly stretchable and fast electro-responsive graphene oxide/polyacrylamide/alginate hydrogel fibers[J]. European Polymer Journal,2018,103:335-341. doi: 10.1016/j.eurpolymj.2018.04.019
    [53]
    JI X, GUO S, ZENG C, et al. Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device[J]. RSC Advances,2015,5(4):2517-2522. doi: 10.1039/C4RA10389K
    [54]
    TIAN Y, ZHU P, TANG X, et al. Large-scale water collection of bioinspired cavity-microfibers[J]. Nature Communications, 2017, 8(1): 1080.
    [55]
    SHANG L, FU F, CHENG Y, et al. Bioinspired multifunctional spindle-knotted microfibers from microfluidics[J]. Small,2017,13(4):1600286. doi: 10.1002/smll.201600286
    [56]
    SHANG L, WANG Y, YU Y, et al. Bio-inspired stimuli-responsive graphene oxide fibers from microfluidics[J]. Journal of Materials Chemistry A,2017,5(29):15026-15030. doi: 10.1039/C7TA02924A
    [57]
    YU Y, FU F, SHANG L, et al. Bioinspired helical microfibers from microfluidics[J]. Advanced Materials,2017,29(18):1605765. doi: 10.1002/adma.201605765
    [58]
    YU Y, GUO J, SUN L, et al. Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics[J]. Research,2019,2019:1-9.
    [59]
    YANG H, GUO M. Bioinspired polymeric helical and superhelical microfibers via microfluidic spinning[J]. Macromolecular Rapid Communications,2019,40(12):1900111. doi: 10.1002/marc.201900111
    [60]
    MA W, LIU D, LING S, et al. High-throughput and controllable fabrication of helical microfibers by hydrodynamically focusing flow[J]. ACS Applied Materials Interfaces,2021,13(49):59392-59399.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1191) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return