Citation: | QIU Tianxu, ZHANG Wei, LIU Yong. Effect of multi-element alloy-carbide bonding phase on the microstructure of diamond composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4173-4183. DOI: 10.13801/j.cnki.fhclxb.20221014.006 |
[1] |
KUNUKU S, SANKARAN K J, TSAI C Y, et al. Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications[J]. ACS Applied Materials & Interfaces,2013,5(15):7439-7449. DOI: 10.1021/am401753h
|
[2] |
FURBERG A, FRANSSON K, ZACKRISSON M, et al. Environmental and resource aspects of substituting cemented carbide with polycrystalline diamond: The case of machining tools[J]. Journal of Cleaner Production,2020,277:123577. DOI: 10.1016/j.jclepro.2020.123577
|
[3] |
GAO K, LI M, DONG B, et al. Bionic coupling polycrystalline diamond composite bit[J]. Petroleum Exploration and Development,2014,41(4):533-537. DOI: 10.1016/S1876-3804(14)60063-X
|
[4] |
TANG H, YUAN X H, CHENG Y, et al. Synthesis of paracrystalline diamond[J]. Nature,2021,599:605-610. DOI: 10.1038/s41586-021-04122-w
|
[5] |
ZENG Z D, YANG L X, ZENG Q S, et al. Synthesis of quenchable amorphous diamond[J]. Nature Communications,2017,8(1):1-7. DOI: 10.1038/s41467-016-0009-6
|
[6] |
EGGERT J H, HICKS D G, CELLIERS P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics,2010,6(1):40-43. DOI: 10.1038/nphys1438
|
[7] |
TANIGAKI K, OGI H, SUMIYA H, et al. Observation of higher stiffness in nanopolycrystal diamond than monocrystal diamond[J]. Nature Communications,2013,4(1):1-7.
|
[8] |
XIAO J W, WEN B, XU B, et al. Intersectional nanotwinned diamond-the hardest polycrystalline diamond by design[J]. npj Computational Materials,2020,6(1):1-7. DOI: 10.1038/s41524-019-0267-z
|
[9] |
HUANG Q, YU D L, BO X, et al. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature,2014,510(7504):250-253. DOI: 10.1038/nature13381
|
[10] |
LI Q, ZHAN G D, LI D, et al. Ultrastrong catalyst-free polycrystalline diamond[J]. Scientific Reports, 2020, 10(1): 1-10.
|
[11] |
ZHAO B, ZHANG S Y, DUAN S, et al. Enhanced strength of nano-polycrystalline diamond by introducing boron carbide interlayers at the grain boundaries[J]. Nanoscale Advances,2020,2(2):691-698. DOI: 10.1039/C9NA00699K
|
[12] |
邓福铭, 赵国刚, 王振廷, 等. 聚晶金刚石复合体超高压液相烧结理论研究[J]. 高压物理学报, 2004, 18(3):252-260. DOI: 10.3969/j.issn.1000-5773.2004.03.010
DENG Fuming, ZHAO Guogang, WANG Zhenting, et al. Theoretical study on high pressure liquid sintering of polycrystalline diamond compact[J]. Chinese Journal of High Pressure Physics,2004,18(3):252-260(in Chinese). DOI: 10.3969/j.issn.1000-5773.2004.03.010
|
[13] |
MALLIKA K, DEVRIES R C, KOMANDURI R. On the low pressure transformation of graphite to diamond in the presence of a 'catalyst-solvent'[J]. Thin Solid Films,1999,339(1-2):19-33. DOI: 10.1016/S0040-6090(98)00978-X
|
[14] |
CHEN N, MA H G, FANG C, et al. Synthesis and characterization of IIa-type S-doped diamond in FeNi catalyst under high pressure and high temperature conditions[J]. International Journal of Refractory Metals and Hard Materials,2017,66:122-126. DOI: 10.1016/j.ijrmhm.2017.03.006
|
[15] |
胡强, 贾晓鹏, 李尚升, 等. 高压熔渗生长法制备金刚石聚晶中碳的转化机制研究[J]. 物理学报, 2016, 65(6):068101. DOI: 10.7498/aps.65.068101
HU Qiang, JIA Xiaopeng, LI Shangsheng, et al. Research on mechanism of carbon transformation in the preparation of polycrystalline diamond by melt infiltration and growth method under high pressures[J]. Acta Physica Sinica,2016,65(6):068101(in Chinese). DOI: 10.7498/aps.65.068101
|
[16] |
MASHHADIKARIMI M, MEDEIROS R B D, BARRETO L P P, et al. Development of a novel triple-layer polycrystalline diamond compact[J]. Diamond and Related Materials,2021,111:108182. DOI: 10.1016/j.diamond.2020.108182
|
[17] |
GUO Z H, DENG F M, ZHANG L, et al. The novel and facile electrolysis method for removing the cobalt binder phase from large diameter polycrystalline diamond compacts[J]. Ceramics International,2022,48(3):3125-3132. DOI: 10.1016/j.ceramint.2021.10.086
|
[18] |
CHEN F, XU G, MA C D, et al. Thermal residual stress of polycrystalline diamond compacts[J]. Transactions of Nonferrous Metals Society of China,2010,20(2):227-232. DOI: 10.1016/S1003-6326(09)60126-6
|
[19] |
JIA H S, JIA X P, MA H A, et al. Synthesis of growth-type polycrystalline diamond compact (PDC) using the solvent Fe55Ni29Co16 alloy under HPHT[J]. Science China: Physics, Mechanics & Astronomy,2012,55(8):1394-1398.
|
[20] |
LI C, TENG J W, YANG B B, et al. Correlation between microstructure and mechanical properties of novel Co-Ni-based powder metallurgy superalloy[J]. Materials Characterization,2021,181:111480. DOI: 10.1016/j.matchar.2021.111480
|
[21] |
刘咏, 曹远奎, 吴文倩, 等. 粉末冶金高熵合金研究进展[J]. 中国有色金属学报, 2019, 29(9):2155-2184. DOI: 10.19476/j.ysxb.1004.0609.2019.09.16
LIU Yong, CAO Yuankui, WU Wenqian, et al. Progress of powder metallurgical high entropy alloys[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):2155-2184(in Chinese). DOI: 10.19476/j.ysxb.1004.0609.2019.09.16
|
[22] |
FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8(4):235-246. DOI: 10.1038/nnano.2013.46
|
[23] |
朱瑞华, 刘金龙, 陈良贤, 等. 金刚石自支撑膜拉曼光谱1420 cm−1特征峰研究[J]. 人工晶体学报, 2015, 44(4):867-871. DOI: 10.3969/j.issn.1000-985X.2015.04.003
ZHU Ruihua, LIU Jinlong, CHEN Liangxian, et al. Research on 1420 cm−1 characteristic peak of free-standing diamond films in raman spectrum[J]. Journal of Synthetic Crystals,2015,44(4):867-871(in Chinese). DOI: 10.3969/j.issn.1000-985X.2015.04.003
|
[24] |
BERMAN R, SIMON F. On the graphite-diamond equilibrium[J]. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie,1955,59(5):333-338. DOI: 10.1002/bbpc.19550590503
|
[25] |
KENNEDY C S, KENNEDY G C. The equilibrium boundary between graphite and diamond[J]. Journal of Geophysical Research,1976,81(14):2467-2470. DOI: 10.1029/JB081i014p02467
|
[26] |
叶大伦, 胡建华. 实用无机热力学数据手册[M]. 北京: 冶金工业出版社, 2002: 1-5.
YE Dalun, HU Jianhua. The thermodynamic data manual of practical inorganic materials[M]. Beijing: Metallurgical Industry Press, 2002: 1-5(in Chinese).
|
[27] |
MOUNET N, MARZARI N. High-accuracy fist-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives[J]. Physical Review B,2005,71(20):1-17. DOI: 10.1103/PhysRevB.71.205214
|
[28] |
CONNÉTABLE D. First-principles study of transition metal carbides[J]. Materials Research Express,2016,3(12):126502. DOI: 10.1088/2053-1591/3/12/126502
|
[29] |
JIANG D, ZHONG S, XIAO W, et al. Structural, mechanical, electronic, and thermodynamic properties of pure tungsten metal under different pressures: A first-principles study[J]. International Journal of Quantum Chemistry,2020,120(13):e26231. DOI: 10.1002/qua.26231
|
[30] |
GOLOVCHAN V T. On the thermal residual micro-stresses in WC-Co hard metals[J]. International Journal of Refractory Metals and Hard Materials,2007,25(4):341-344. DOI: 10.1016/j.ijrmhm.2006.08.002
|
[31] |
LI X, ZHANG X, QIN J, et al. First-principles calculations of structural stability and mechanical properties of tungsten carbide under high pressure[J]. Journal of Physics & Chemistry of Solids,2014,75(11):1234-1239. DOI: 10.1016/j.jpcs.2014.06.011
|
[32] |
JIANG C. First-principles study of structural, elastic, and electronic properties of chromium carbides[J]. Applied Physics Letters,2008,92(4):041909. DOI: 10.1063/1.2838345
|
[33] |
TAKEUCHI A, INOUE A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys[J]. Materials Transactions,2000,41(11):1372-1378. DOI: 10.2320/matertrans1989.41.1372
|
[34] |
TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions,2005,46(12):2817-2829. DOI: 10.2320/matertrans.46.2817
|
1. |
翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 连续光纤激光切割金属薄壁材料工艺研究. 红外与激光工程. 2024(02): 33-43 .
![]() | |
2. |
陶洋,李存静,逄增媛,张典堂. 展宽布/网胎针刺C/C复合材料制备及力学性能. 复合材料学报. 2024(04): 1934-1944 .
![]() | |
3. |
董志刚,王中旺,冉乙川,鲍岩,康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展. 机械工程学报. 2024(09): 26-56 .
![]() | |
4. |
席翔,李海龙,陈友元,裴景奇,廖城坤,薛琳,储洪强,冉千平. 碳纤维增强碳基复合材料的介电性能对应力的自感知. 高分子材料科学与工程. 2024(05): 115-124 .
![]() | |
5. |
钱奇伟,张昕,杨贞军,沈镇,校金友. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别. 复合材料学报. 2024(07): 3536-3543 .
![]() | |
6. |
翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 基于正交试验的金属薄壁材料激光切割工艺优化. 中国机械工程. 2024(07): 1279-1289 .
![]() | |
7. |
何金玲. 纤维复材浆料流变性能分析及矿混匀质量应用研究. 粘接. 2024(09): 87-90 .
![]() | |
8. |
姚先龙. 碳基复合材料的应用及相关制备方法. 信息记录材料. 2023(01): 36-38 .
![]() | |
9. |
石磊,罗浩,罗瑞盈. 胶层厚度对C/C复合材料剪切粘接性能的影响. 炭素技术. 2023(04): 22-26 .
![]() | |
10. |
刘科众,陈舟,王泽鹏,韩保恒. C/C复合材料增密过程孔隙结构及演化研究. 机械设计与制造工程. 2022(10): 33-36 .
![]() |