QIU Tianxu, ZHANG Wei, LIU Yong. Effect of multi-element alloy-carbide bonding phase on the microstructure of diamond composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4173-4183. DOI: 10.13801/j.cnki.fhclxb.20221014.006
Citation: QIU Tianxu, ZHANG Wei, LIU Yong. Effect of multi-element alloy-carbide bonding phase on the microstructure of diamond composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4173-4183. DOI: 10.13801/j.cnki.fhclxb.20221014.006

Effect of multi-element alloy-carbide bonding phase on the microstructure of diamond composites

Funds: National Key Research and Development Program of China (2021 YFB3701800); Regional Innovation and Development Joint Fund of National Natural Science of China (U20 A20236)
More Information
  • Received Date: July 13, 2022
  • Revised Date: September 14, 2022
  • Accepted Date: October 01, 2022
  • Available Online: October 16, 2022
  • Diamond composites are widely used in processing, drilling and other fields, and improving the bonding strength of the diamond skeleton is an important research direction. In this work, Co50Ni40Fe10 multi-element alloy-carbide was used as the binder instead of Co to prepare diamond composites under high temperature and high pressure, and the influence of multi-element alloys and carbides on the microstructure of composites was studied by experiments and thermodynamic calculations. The results show that, compared with Co, Co50Ni40Fe10 multi-element alloy has stronger ability to promote the migration and diffusion of C atoms, which can accelerate the formation of diamond skeleton. Under the condition of high temperature and high pressure, the carbon content in WC increased slightly, which has little effect on the formation of diamond skeleton; TiC lost C slightly, which can promote the formation of diamond skeleton to a certain extent; The C produced by Cr3C2 decomposition can promote the formation of diamond skeleton.
  • [1]
    KUNUKU S, SANKARAN K J, TSAI C Y, et al. Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications[J]. ACS Applied Materials & Interfaces,2013,5(15):7439-7449. DOI: 10.1021/am401753h
    [2]
    FURBERG A, FRANSSON K, ZACKRISSON M, et al. Environmental and resource aspects of substituting cemented carbide with polycrystalline diamond: The case of machining tools[J]. Journal of Cleaner Production,2020,277:123577. DOI: 10.1016/j.jclepro.2020.123577
    [3]
    GAO K, LI M, DONG B, et al. Bionic coupling polycrystalline diamond composite bit[J]. Petroleum Exploration and Development,2014,41(4):533-537. DOI: 10.1016/S1876-3804(14)60063-X
    [4]
    TANG H, YUAN X H, CHENG Y, et al. Synthesis of paracrystalline diamond[J]. Nature,2021,599:605-610. DOI: 10.1038/s41586-021-04122-w
    [5]
    ZENG Z D, YANG L X, ZENG Q S, et al. Synthesis of quenchable amorphous diamond[J]. Nature Communications,2017,8(1):1-7. DOI: 10.1038/s41467-016-0009-6
    [6]
    EGGERT J H, HICKS D G, CELLIERS P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics,2010,6(1):40-43. DOI: 10.1038/nphys1438
    [7]
    TANIGAKI K, OGI H, SUMIYA H, et al. Observation of higher stiffness in nanopolycrystal diamond than monocrystal diamond[J]. Nature Communications,2013,4(1):1-7.
    [8]
    XIAO J W, WEN B, XU B, et al. Intersectional nanotwinned diamond-the hardest polycrystalline diamond by design[J]. npj Computational Materials,2020,6(1):1-7. DOI: 10.1038/s41524-019-0267-z
    [9]
    HUANG Q, YU D L, BO X, et al. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature,2014,510(7504):250-253. DOI: 10.1038/nature13381
    [10]
    LI Q, ZHAN G D, LI D, et al. Ultrastrong catalyst-free polycrystalline diamond[J]. Scientific Reports, 2020, 10(1): 1-10.
    [11]
    ZHAO B, ZHANG S Y, DUAN S, et al. Enhanced strength of nano-polycrystalline diamond by introducing boron carbide interlayers at the grain boundaries[J]. Nanoscale Advances,2020,2(2):691-698. DOI: 10.1039/C9NA00699K
    [12]
    邓福铭, 赵国刚, 王振廷, 等. 聚晶金刚石复合体超高压液相烧结理论研究[J]. 高压物理学报, 2004, 18(3):252-260. DOI: 10.3969/j.issn.1000-5773.2004.03.010

    DENG Fuming, ZHAO Guogang, WANG Zhenting, et al. Theoretical study on high pressure liquid sintering of polycrystalline diamond compact[J]. Chinese Journal of High Pressure Physics,2004,18(3):252-260(in Chinese). DOI: 10.3969/j.issn.1000-5773.2004.03.010
    [13]
    MALLIKA K, DEVRIES R C, KOMANDURI R. On the low pressure transformation of graphite to diamond in the presence of a 'catalyst-solvent'[J]. Thin Solid Films,1999,339(1-2):19-33. DOI: 10.1016/S0040-6090(98)00978-X
    [14]
    CHEN N, MA H G, FANG C, et al. Synthesis and characterization of IIa-type S-doped diamond in FeNi catalyst under high pressure and high temperature conditions[J]. International Journal of Refractory Metals and Hard Materials,2017,66:122-126. DOI: 10.1016/j.ijrmhm.2017.03.006
    [15]
    胡强, 贾晓鹏, 李尚升, 等. 高压熔渗生长法制备金刚石聚晶中碳的转化机制研究[J]. 物理学报, 2016, 65(6):068101. DOI: 10.7498/aps.65.068101

    HU Qiang, JIA Xiaopeng, LI Shangsheng, et al. Research on mechanism of carbon transformation in the preparation of polycrystalline diamond by melt infiltration and growth method under high pressures[J]. Acta Physica Sinica,2016,65(6):068101(in Chinese). DOI: 10.7498/aps.65.068101
    [16]
    MASHHADIKARIMI M, MEDEIROS R B D, BARRETO L P P, et al. Development of a novel triple-layer polycrystalline diamond compact[J]. Diamond and Related Materials,2021,111:108182. DOI: 10.1016/j.diamond.2020.108182
    [17]
    GUO Z H, DENG F M, ZHANG L, et al. The novel and facile electrolysis method for removing the cobalt binder phase from large diameter polycrystalline diamond compacts[J]. Ceramics International,2022,48(3):3125-3132. DOI: 10.1016/j.ceramint.2021.10.086
    [18]
    CHEN F, XU G, MA C D, et al. Thermal residual stress of polycrystalline diamond compacts[J]. Transactions of Nonferrous Metals Society of China,2010,20(2):227-232. DOI: 10.1016/S1003-6326(09)60126-6
    [19]
    JIA H S, JIA X P, MA H A, et al. Synthesis of growth-type polycrystalline diamond compact (PDC) using the solvent Fe55Ni29Co16 alloy under HPHT[J]. Science China: Physics, Mechanics & Astronomy,2012,55(8):1394-1398.
    [20]
    LI C, TENG J W, YANG B B, et al. Correlation between microstructure and mechanical properties of novel Co-Ni-based powder metallurgy superalloy[J]. Materials Characterization,2021,181:111480. DOI: 10.1016/j.matchar.2021.111480
    [21]
    刘咏, 曹远奎, 吴文倩, 等. 粉末冶金高熵合金研究进展[J]. 中国有色金属学报, 2019, 29(9):2155-2184. DOI: 10.19476/j.ysxb.1004.0609.2019.09.16

    LIU Yong, CAO Yuankui, WU Wenqian, et al. Progress of powder metallurgical high entropy alloys[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):2155-2184(in Chinese). DOI: 10.19476/j.ysxb.1004.0609.2019.09.16
    [22]
    FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8(4):235-246. DOI: 10.1038/nnano.2013.46
    [23]
    朱瑞华, 刘金龙, 陈良贤, 等. 金刚石自支撑膜拉曼光谱1420 cm−1特征峰研究[J]. 人工晶体学报, 2015, 44(4):867-871. DOI: 10.3969/j.issn.1000-985X.2015.04.003

    ZHU Ruihua, LIU Jinlong, CHEN Liangxian, et al. Research on 1420 cm−1 characteristic peak of free-standing diamond films in raman spectrum[J]. Journal of Synthetic Crystals,2015,44(4):867-871(in Chinese). DOI: 10.3969/j.issn.1000-985X.2015.04.003
    [24]
    BERMAN R, SIMON F. On the graphite-diamond equilibrium[J]. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie,1955,59(5):333-338. DOI: 10.1002/bbpc.19550590503
    [25]
    KENNEDY C S, KENNEDY G C. The equilibrium boundary between graphite and diamond[J]. Journal of Geophysical Research,1976,81(14):2467-2470. DOI: 10.1029/JB081i014p02467
    [26]
    叶大伦, 胡建华. 实用无机热力学数据手册[M]. 北京: 冶金工业出版社, 2002: 1-5.

    YE Dalun, HU Jianhua. The thermodynamic data manual of practical inorganic materials[M]. Beijing: Metallurgical Industry Press, 2002: 1-5(in Chinese).
    [27]
    MOUNET N, MARZARI N. High-accuracy fist-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives[J]. Physical Review B,2005,71(20):1-17. DOI: 10.1103/PhysRevB.71.205214
    [28]
    CONNÉTABLE D. First-principles study of transition metal carbides[J]. Materials Research Express,2016,3(12):126502. DOI: 10.1088/2053-1591/3/12/126502
    [29]
    JIANG D, ZHONG S, XIAO W, et al. Structural, mechanical, electronic, and thermodynamic properties of pure tungsten metal under different pressures: A first-principles study[J]. International Journal of Quantum Chemistry,2020,120(13):e26231. DOI: 10.1002/qua.26231
    [30]
    GOLOVCHAN V T. On the thermal residual micro-stresses in WC-Co hard metals[J]. International Journal of Refractory Metals and Hard Materials,2007,25(4):341-344. DOI: 10.1016/j.ijrmhm.2006.08.002
    [31]
    LI X, ZHANG X, QIN J, et al. First-principles calculations of structural stability and mechanical properties of tungsten carbide under high pressure[J]. Journal of Physics & Chemistry of Solids,2014,75(11):1234-1239. DOI: 10.1016/j.jpcs.2014.06.011
    [32]
    JIANG C. First-principles study of structural, elastic, and electronic properties of chromium carbides[J]. Applied Physics Letters,2008,92(4):041909. DOI: 10.1063/1.2838345
    [33]
    TAKEUCHI A, INOUE A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys[J]. Materials Transactions,2000,41(11):1372-1378. DOI: 10.2320/matertrans1989.41.1372
    [34]
    TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions,2005,46(12):2817-2829. DOI: 10.2320/matertrans.46.2817
  • Related Articles

    [1]WANG Chuanhao, WANG Mingye, LIU Ying, WANG Yongquan, SONG Yutong, ZHOU Chao. Preparation and research of Diatomite@PNIPAm-stabilized Pickering emulsion with temperature responsiveness[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6589-6598. DOI: 10.13801/j.cnki.fhclxb.20240314.001
    [2]CAO Xiping, DENG Wei, CHENG Guanzhi, WANG Xi, GUAN Wenxun, XIE Yongjiang. Preparation of Fe3O4/poly(styrene-isooctyl acrylate) composite emulsion via miniemulsion polymerization and damping properties of its latex film[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 261-270. DOI: 10.13801/j.cnki.fhclxb.20230504.001
    [3]CHEN Fen, DU Chunhui, HU Jintai, WU Chunjin. MOF in-situ growth modified poly(p-chloromethyl styrene)-polyvinylidene fluoride forward osmosis composite membrane and its anti-fouling performance for emulsified oil wastewater[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2075-2084. DOI: 10.13801/j.cnki.fhclxb.20220606.002
    [4]LIN Qiang, LIU Zanqun, YU Lei, ZHOU Yunchan, CUI Yu. Mechanical properties of emulsified asphalt rubber concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1560-1568. DOI: 10.13801/j.cnki.fhclxb.20220513.003
    [5]SONG Xuefeng, GUO Yuanfei. Preparation and performance of styrene acrylic emulsion-slag geopolymer foam composite[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3232-3241. DOI: 10.13801/j.cnki.fhclxb.20210827.001
    [6]ZHOU Xiaolong, LI Jintao, XIONG Aihu, CAO Hanxing, WANG Lihui. Effects of graphite content on microstructure and properties of Cu-graphite-emulsified asphalt composites[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3775-3784. DOI: 10.13801/j.cnki.fhclxb.20210121.001
    [7]WANG Chunhong, ZUO Qi, ZHI Zhongxiang, XU Lei, SARANI Zakaria, SHERAZ Hussain Siddique Yousfani. Effect of polyvinyl alcohol emulsion modification on performance of hemp straw fiber/cementitious composite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1567-1575. DOI: 10.13801/j.cnki.fhclxb.20200827.002
    [8]WANG Tengjiao, XU Jinyu, ZHU Congjin, REN Weibo. Effects of cement-powder ratio on static mechanical properties and failure forms of styrene-acrylic emulsion-based cement composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2324-2335. DOI: 10.13801/j.cnki.fhclxb.20200212.002
    [9]LI Yunliang, LIU Yuze, JI Lun, TAN Yiqiu. Effect of aging on the dynamic mechanical properties of cement emulsified asphalt mastic[J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1975-1982. DOI: 10.13801/j.cnki.fhclxb.20170821.010
    [10]Preparation and characterization of Pd-P(MMA-AMPS) composite microspheres via ultrasonic emulsifier-free emulsion in situ polymerization[J]. Acta Materiae Compositae Sinica, 2009, 26(3): 67-72.
  • Cited by

    Periodical cited type(10)

    1. 翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 连续光纤激光切割金属薄壁材料工艺研究. 红外与激光工程. 2024(02): 33-43 .
    2. 陶洋,李存静,逄增媛,张典堂. 展宽布/网胎针刺C/C复合材料制备及力学性能. 复合材料学报. 2024(04): 1934-1944 . 本站查看
    3. 董志刚,王中旺,冉乙川,鲍岩,康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展. 机械工程学报. 2024(09): 26-56 .
    4. 席翔,李海龙,陈友元,裴景奇,廖城坤,薛琳,储洪强,冉千平. 碳纤维增强碳基复合材料的介电性能对应力的自感知. 高分子材料科学与工程. 2024(05): 115-124 .
    5. 钱奇伟,张昕,杨贞军,沈镇,校金友. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别. 复合材料学报. 2024(07): 3536-3543 . 本站查看
    6. 翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 基于正交试验的金属薄壁材料激光切割工艺优化. 中国机械工程. 2024(07): 1279-1289 .
    7. 何金玲. 纤维复材浆料流变性能分析及矿混匀质量应用研究. 粘接. 2024(09): 87-90 .
    8. 姚先龙. 碳基复合材料的应用及相关制备方法. 信息记录材料. 2023(01): 36-38 .
    9. 石磊,罗浩,罗瑞盈. 胶层厚度对C/C复合材料剪切粘接性能的影响. 炭素技术. 2023(04): 22-26 .
    10. 刘科众,陈舟,王泽鹏,韩保恒. C/C复合材料增密过程孔隙结构及演化研究. 机械设计与制造工程. 2022(10): 33-36 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (661) PDF downloads (58) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return