LIU Xin, YUAN Ye, QU Jia. Study on dynamic and static mechanical properties of glass beads/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3874-3880. DOI: 10.13801/j.cnki.fhclxb.20220930.003
Citation: LIU Xin, YUAN Ye, QU Jia. Study on dynamic and static mechanical properties of glass beads/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3874-3880. DOI: 10.13801/j.cnki.fhclxb.20220930.003

Study on dynamic and static mechanical properties of glass beads/epoxy resin composites

Funds: National Natural Science Foundation of China (11972007)
More Information
  • Received Date: July 20, 2022
  • Revised Date: August 27, 2022
  • Accepted Date: September 19, 2022
  • Available Online: October 05, 2022
  • Glass bead buoyancy material is a two-phase composite material made of hollow glass bead (HGB) and epoxy resin. Glass bead has been widely used in building materials, navigation, aerospace and other fields because of its low density, high strength and low water absorption. Its static mechanical properties have been fully studied, but its dynamic mechanical properties are less studied, which are not enough to meet the needs of engineering applications. The compression, splitting and pseudo-triaxial compression experiments of HGB/epoxy resin composites under quasi-static/dynamic loading were carried out by INSTRON electronic universal testing machine and split Hopkinson pressure bar (SHPB). The results show that HGB/epoxy composite has strong strain rate sensitivity. The compressive strength and splitting resistance increase with the increase of strain rate, showing strain rate enhancement effect. The failure mode is also rate sensitive, and its brittleness increases with the increase of strain rate. Comparing uniaxial compression with pseudo triaxial compression, it is found that the compressive strength of the material under pseudo triaxial compression is higher than that under uniaxial compression.
  • [1]
    李乐, 于良民, 李昌诚, 等. 固体浮力材料及其性能研究现状[J]. 材料导报, 2012, 26(17):66-69. DOI: 10.3969/j.issn.1005-023X.2012.17.014

    LI Le, YU Liangmin, LI Changcheng, et al. Solid buoyancy material and research status on its properties[J]. Materials Reports,2012,26(17):66-69(in Chinese). DOI: 10.3969/j.issn.1005-023X.2012.17.014
    [2]
    苏航, 段正才, 冉安国, 等. 环氧树脂/中空玻璃微珠复合材料研究现状[J]. 工程塑料应用, 2022, 50(1):165-169. DOI: 10.3969/j.issn.1001-3539.2022.01.029

    SU Hang, DUAN Zhengcai, RAN Anguo, et al. Research status of epoxy resin/hollow glass microsphere composites[J]. Engineering Plastics Application,2022,50(1):165-169(in Chinese). DOI: 10.3969/j.issn.1001-3539.2022.01.029
    [3]
    周金磊. 空心玻璃微珠/环氧树脂复合材料的制备及性能研究[D]. 青岛: 中国海洋大学, 2013.

    ZHOU Jinlei. Preparation and properties of the hollow glass microsphere/epoxy resin composites[D]. Qingdao: Ocean University of China, 2013(in Chinese).
    [4]
    刘艳妮, 徐伟, 王嵘. 空心玻璃微珠/环氧树脂复合材料制备及其性能研究[J]. 玻璃钢/复合材料, 2012, 227(6):52-56.

    LIU Yanni, XU Wei, WANG Rong. Study on hollow glass microspheres/epoxy resin composite materials preparation and its properties[J]. Fiber Reinforced Plastics/Composites,2012,227(6):52-56(in Chinese).
    [5]
    PANTEGHINI A, BARDELLA L. On the compressive strength of glass microballoons-based syntactic foams[J]. Mechanics of Materials,2015,82:63-77.
    [6]
    WOUTERSON E M, BOEY F, HU X. Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures[J]. Composites Science and Technology,2005,65(11/12):1840-1850.
    [7]
    KIM H S, KHAMIS M A. Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites[J]. Composites Part A: Applied Science & Manufacturing,2001,32(9):1311-1317.
    [8]
    SWETHA C, KUMAR R. Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams[J]. Materials & Design,2011,32(8-9):4152-4163.
    [9]
    卢子兴. 复合泡沫塑料力学行为的研究综述[J]. 力学进展, 2004, 34(3):341-348. DOI: 10.3321/j.issn:1000-0992.2004.03.005

    LU Zixing. A review of studies on the mechanical behavior of syntactic foamed platics[J]. Advances in Mechanics,2004,34(3):341-348(in Chinese). DOI: 10.3321/j.issn:1000-0992.2004.03.005
    [10]
    胡传群, 曾黎明, 胡兵. 空心玻璃微珠在复合材料中的应用研究[J]. 绿色建筑, 2008, 24(3):46-48. DOI: 10.3969/j.issn.1004-1672.2008.03.016

    HU Chuanqun, ZENG Liming, HU Bing. Applied study of cenosphere to composite[J]. Green Building,2008,24(3):46-48(in Chinese). DOI: 10.3969/j.issn.1004-1672.2008.03.016
    [11]
    孙春宝, 汪群慧, 邢奕, 等. 深海高强安全浮力材料的研制及其表征[J]. 哈尔滨工业大学学报, 2006(11):2000-2002. DOI: 10.3321/j.issn:0367-6234.2006.11.046

    SUN Chunbao, WANG Qunhui, XING Yi, et al. High intensity deep sea buoyancy material made from polymer filled with hollow micro-glass ball[J]. Journal of Harbin Institute of Technology,2006(11):2000-2002(in Chinese). DOI: 10.3321/j.issn:0367-6234.2006.11.046
    [12]
    周金磊, 戴金辉, 吴平伟, 等. 环氧树脂基固体浮力材料的制备及性能研究[J]. 材料开发与应用, 2013, 28(2): 59-65.

    ZHOU Jinlei, DAI Jinhui, WU Pingwei, et al. Research on preparation and properties of solid buoyancy materials based on epoxy resins[J]. Development and Application of Materials, 2013, 28(2): 59-65(in Chinese).
    [13]
    AFOLABI O A, KANNY K, MOHAN T P. Processing of hollow glass microspheres (HGM) filled epoxy syntactic foam composites with improved structural characteristics[J]. Science and Engineering of Composite Materials,2021,28(1):116-127. DOI: 10.1515/secm-2021-0011
    [14]
    YUNG K C, ZHU B L, YUE T M, et al. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites[J]. Composites Science & Technology,2009,69(2):260-264.
    [15]
    孙春宝, 邢奕, 王啟锋. 空心玻璃微珠填充聚合物合成深海高强浮力材料[J]. 北京科技大学学报, 2006, 28(6):554-558. DOI: 10.3321/j.issn:1001-053X.2006.06.011

    SUN Chunbao, XING Yi, WANG Qifeng. High-strength deep-sea buoyancy material made of polymer filled with hollow glass micro-beads[J]. Chinese Journal of Engineering,2006,28(6):554-558(in Chinese). DOI: 10.3321/j.issn:1001-053X.2006.06.011
    [16]
    史利利, 李瑞, 胡永玲. 国内空心玻璃微珠/环氧树脂基固体浮力材料研究进展[J]. 化学与粘合, 2020, 42(2):137-139. DOI: 10.3969/j.issn.1001-0017.2020.02.016

    SHI Lili, LI Rui, HU Yongling. Research progress in the hollow glass microsphere/epoxy resin based solid buoyancy materials in China[J]. Chemistry and Adhesion,2020,42(2):137-139(in Chinese). DOI: 10.3969/j.issn.1001-0017.2020.02.016
    [17]
    王彩华. 空心玻璃微珠/环氧树脂复合材料的黏弹性能研究[D]. 秦皇岛: 燕山大学, 2018.

    WANG Caihua. The viscoelastic research on hollow glass beads/epoxy resin composite[D]. Qinhuangdao: Yanshan University, 2018(in Chinese).
    [18]
    邓小亮, 周欣, 王凯莉, 等. PET/空心玻璃微珠复合材料的制备及性能研究[J]. 聚酯工业, 2019, 32(6):28-30. DOI: 10.3969/j.issn.1008-8261.2019.06.008

    DENG Xiaoliang, ZHOU Xin, WANG Kaili, et al. Preparation and properties of PET/hollow glass bead composite[J]. Polyester Industry,2019,32(6):28-30(in Chinese). DOI: 10.3969/j.issn.1008-8261.2019.06.008
    [19]
    鄢柳柳, 徐任信, 王钧, 等. 碳纤维增强轻质耐压复合材料的制备及性能研究[J]. 玻璃钢/复合材料, 2016(7):8-41.

    YAN Liuliu, XU Renxin, WANG Jun, et al. Study on preparation and property of carbon fiber reinforced lightweight compression-resistance composites[J]. Composites Science and Engineering,2016(7):8-41(in Chinese).
    [20]
    王跃平, 杨东杰, 马志超, 等. 全海深浮力材料的研究与制备[J]. 材料开发与应用, 2021, 36(4):57-61. DOI: 10.19515/j.cnki.1003-1545.2021.04.010

    WANG Yueping, YANG Dongjie, MA Zhichao, et al. Study on and preparation of full ocean depth buoyancy materials[J]. Development and Application of Materials,2021,36(4):57-61(in Chinese). DOI: 10.19515/j.cnki.1003-1545.2021.04.010
    [21]
    丁雪佳, 李亮, 余鼎声, 等. 空心玻璃微珠填充PP复合材料的结构与性能研究[J]. 中国塑料, 2002, 16(12):43-46. DOI: 10.3321/j.issn:1001-9278.2002.12.009

    DING Xuejia, LI Liang, YU Dingsheng, et al. Structure and properties of hollow microbeads filled PP[J]. China Plastics,2002,16(12):43-46(in Chinese). DOI: 10.3321/j.issn:1001-9278.2002.12.009
    [22]
    张洋, 李俊杰, 王俊, 等. 微珠泡沫填充玻璃纤维增强聚合物(GFRP)十字格构柱准静态压缩性能[J]. 材料科学与工程学报, 2020, 38(6):924-927, 994. DOI: 10.14136/j.cnki.issn1673-2812.2020.06.010

    ZHANG Yang, LI Junjie, WANG Jun, et al. Quasi-static compression performance of GFRP cross-grid columns filled with microbead foam[J]. Journal of Materials Science and Engineering,2020,38(6):924-927, 994(in Chinese). DOI: 10.14136/j.cnki.issn1673-2812.2020.06.010
    [23]
    支超, 龙海如. 经编间隔织物/空心玻璃微珠增强环氧树脂基复合材料的弯曲性能[J]. 东华大学学报(自然科学版), 2016, 42(3):338-343, 349.

    ZHI Chao, LONG Hairu. Flexural properties of epoxy resin matrix composites reinforced with warp knitted spacer fabric/hollow glass microballoons[J]. Journal of Donghua University (Natural Science),2016,42(3):338-343, 349(in Chinese).
    [24]
    宋力, 胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4):368-373. DOI: 10.3321/j.issn:1001-1455.2005.04.014

    SONG Li, HU Shisheng. Two-wave and three-wave method in SHPB date processing[J]. Explosion and Shock Waves,2005,25(4):368-373(in Chinese). DOI: 10.3321/j.issn:1001-1455.2005.04.014
    [25]
    中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013[S]. Beijing: China Planning Press, 2013(in Chinese).
    [26]
    曲嘉. 钢纤维混凝土劈拉强度的实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.

    QU Jia. The experimental study on the split strength of SFRC[D]. Harbin: Harbin Engineering University, 2010(in Chinese).
  • Related Articles

    [1]RUAN Banchao, SHI Tongya, WANG Yonggang. Influence of strain rate on tensile mechanical behavior of E glass fiber reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2715-2722. DOI: 10.13801/j.cnki.fhclxb.20180209.007
    [2]YANG Huiwei, LU Guoyun. Effect of strain rate on nacre with brick-and-mortar microstructure[J]. Acta Materiae Compositae Sinica, 2017, 34(12): 2756-2761. DOI: 10.13801/j.cnki.fhclxb.20170302.002
    [3]ZHU Deju, HUO Xingfei. Effects of gauge length and strain rate on tensile behavior of jute yarns[J]. Acta Materiae Compositae Sinica, 2017, 34(2): 446-455. DOI: 10.13801/j.cnki.fhclxb.20160406.001
    [4]GE Yingfei, XU Jiuhua, HUAN Haixiang. Effects of temperature and strain rate on dynamic compressive property and failure mechanism of in-situ synthesized titanium matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2277-2289. DOI: 10.13801/j.cnki.fhclxb.20160118.003
    [5]High-strain-rate mechanical behavior of basalt f iber reinforced geopolymeric concrete[J]. Acta Materiae Compositae Sinica, 2009, 26(2): 160-164.
    [6]WANG Zhenghao, ZHAO Guiping, MA Junfeng, ZHANG Jianxin. Experiment study on the strain rate behavior of carbon/epoxy composite materials[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 113-119.
    [7]XIONG Tao, YANG Bin, XIONG Jie, XU Xin-jian, ZHOU Kai, MAO Ming-zhong. Effect of strain rate on the compression behavior of vinyl ester resin casting[J]. Acta Materiae Compositae Sinica, 2006, 23(6): 46-51.
    [8]Tian Lanqiao, Robert K. Y. Li. STRAIN RATE EFFECT ON THE MECHANICAL PROPERTIES OF SHORT FIBRE REINFORCED THERMOPLASTIC PPS[J]. Acta Materiae Compositae Sinica, 1996, 13(4): 89-94.
    [9]Zhao Shixi, M. Gaedke. ASSESSMENT OF CRACK SENSITIVITY IN COMPOSITES──(Ⅱ)MODE II DELAMINATION GROWTH BEHAVIOR OF HTA/6376 AND T300/M10[J]. Acta Materiae Compositae Sinica, 1994, 11(3): 105-111.
    [10]Xia Yuanming, Yuan Jianming, Yang Baochang. THEORY OF THE STATISTICAL CONSTITUTIVE MODEL OF STRAIN RATE DEPENDANCE OF THE FIBER AND ITS EXPERIMENTAL STUDY[J]. Acta Materiae Compositae Sinica, 1993, 10(2): 17-24.

Catalog

    Article Metrics

    Article views (874) PDF downloads (108) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return