Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
XU Xiaojian, LI Bo, ZHAN Shuo. Enhanced solar steam generation using CNTs-HEC/PVDF porous composite membrane[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2749-2758. doi: 10.13801/j.cnki.fhclxb.20220824.001
Citation: XU Xiaojian, LI Bo, ZHAN Shuo. Enhanced solar steam generation using CNTs-HEC/PVDF porous composite membrane[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2749-2758. doi: 10.13801/j.cnki.fhclxb.20220824.001

Enhanced solar steam generation using CNTs-HEC/PVDF porous composite membrane

doi: 10.13801/j.cnki.fhclxb.20220824.001
Funds:  Natural Science Foundation of Zhejiang Province (LY14F040003)
  • Received Date: 2022-05-25
  • Accepted Date: 2022-08-11
  • Rev Recd Date: 2022-07-17
  • Available Online: 2022-08-25
  • Publish Date: 2023-05-15
  • Solar interface water evaporation technology has a broad application prospect in solving the shortage of energy and fresh water resources that mankind is currently facing. Water transport was a very important step in the solar steam generation process. The ideal water transport was to transport the right amount of water to maintain efficient and stable water evaporation from the solar evaporation layer. The capillary force generated by the porous structure of the evaporation layer determined its ability when transporting water. Therefore, the pore structure inside the evaporation layer was very important. In this paper, a porous carbon nanotubes-hydroxyethyl cellulose/polyvinylidene fluoride (CNTs-HEC/PVDF) composite membrane for solar interfacial water evaporation was produced, which was doped with HEC and cross-linking with glutaraldehyde on a PVDF depended on the excellent light absorption capacity of CNTs. The solar interfacial water evaporation performance was improved as the microchannels formed by the porous structure of CNTs-HEC/PVDF composite membranes enhanced water transport and vapor escape. The water evaporation rate reaches 1.81 kg·m−2·h−1 under 1 kW·m−2 of solar irradiation, and the corresponding photothermal conversion efficiency is 95%. The relevant experimental results also show that the composite membrane has excellent recycling performance, chemical stability and efficient sewage purification ability.

     

  • loading
  • [1]
    GREVE P, KAHIL T, MOCHIZUKI J, et al. Global assessment of water challenges under uncertainty in water scarcity projections[J]. Nature,2018,1(9):486-494.
    [2]
    VELDKAMP T, WADA Y, AERTS J, et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century[J]. Nature Communications,2017,8:15697. doi: 10.1038/ncomms15697
    [3]
    ZHAO F, GUO Y, ZHOU X, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials,2020,5(5):388-401. doi: 10.1038/s41578-020-0182-4
    [4]
    TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy,2018,3:1031-1040. doi: 10.1038/s41560-018-0260-7
    [5]
    梁平平, 刘帅, 李红艺, 等. PVDF-CNT自漂浮多孔微珠的制备及在高效太阳能驱动界面水蒸发中的应用[J]. 高等学校化学学报, 2021, 42(8):2689-2693.

    LIANG Pingping, LIU Shuai, LI Hongyi, et al. Self-floating porous PVDF-CNT microbeads for highly efficient solar-driven interfacial water evaporation[J]. Chemical Journal of Chinese Universities,2021,42(8):2689-2693(in Chinese).
    [6]
    GUO C L, MIAO E D, ZHAO J X, et al. Paper-based integrated evaporation device for efficient solar steam generation through localized heating[J]. Solar Energy,2019,188:1283-1291. doi: 10.1016/j.solener.2019.07.023
    [7]
    MIAO E D, YE M Q, GUO C L, et al. Enhanced solar steam generation using carbon nanotube membrane distillation device with heat localization[J]. Applied Thermal Engi-neering,2019,149:1255-1264. doi: 10.1016/j.applthermaleng.2018.12.123
    [8]
    汪日圆, 陈浩然, 陈芳琳, 等. 多巴胺@氮化硼-碳纳米管/聚酰亚胺复合气凝胶太阳能蒸发器的制备与性能[J]. 复合材料学报, 2022, 40(3):1494-1500. doi: 10.13801/j.cnki.fhclxb.20220410.001

    WANG Riyuan, CHEN Haoran, CHEN Fanglin, et al. Preparation and performance of dopamine@boron nitride carbon nanotubes/polyimide composite aerogel solar-driven evaporator[J]. Acta Materiae Compositae Sinica,2022,40(3):1494-1500(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220410.001
    [9]
    ZHOU L, TAN Y, WANG J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics,2016,10(6):393-398. doi: 10.1038/nphoton.2016.75
    [10]
    YING X A, JM A, YU H A, et al. A simple and universal strategy to deposit Ag/polypyrrole on various substrates for enhanced interfacial solar evaporation and antibacterial activity[J]. Chemical Engineering Journal,2020,384(C):123379.
    [11]
    REN P, LI J, ZHANG X, et al. Highly efficient solar water evaporation of TiO2@TiN hyperbranched nanowires-carbonized wood hierarchical photothermal conversion material[J]. Materials Today Energy,2020,18:100546. doi: 10.1016/j.mtener.2020.100546
    [12]
    ZADA I, ZHANG W, SUN P, et al. Superior photothermal black TiO2 with random size distribution as flexible film for efficient solar steam generation[J]. Applied Materials Today,2020,20:100669. doi: 10.1016/j.apmt.2020.100669
    [13]
    薛超瑞, 李洋森, 黄蕊蕊, 等. BiOBr/Bi复合光热粉体的制备及其界面光热驱动水蒸发性能[J]. 复合材料学报, 2022, 39(7):3271-3280. doi: 10.13801/j.cnki.fhclxb.20210909.001

    XUE Chaorui, LI Yangsen, HUANG Ruirui, et al. Preparation of BiOBr/Bi composite photothermal powder and its interfacial photothermal driven water evaporation performance[J]. Acta Materiae Compositae Sinica,2022,39(7):3271-3280(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210909.001
    [14]
    HE J X, FAN Y K, XIAO C H, et al. Enhanced solar steam generation of hydrogel composite with aligned channel and shape memory behavior[J]. Composites Science and Technology,2020,204:108633.
    [15]
    SUN H, ZHOU P, ZHANG W, et al. Flexible and double-layered photothermal material based on resorcinol-formaldehyde foam for solar assisted water desalination[J]. Solar Energy Materials and Solar Cells,2021,232:111350. doi: 10.1016/j.solmat.2021.111350
    [16]
    CHANG C, TAO P, XU J, et al. High-efficiency superheated steam generation for portable sterilization under ambient pressure and low solar flux[J]. ACS Applied Materials & Interfaces,2019,11(20):18466-18474.
    [17]
    HE S, CHEN C, KUANG Y, et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination[J]. Energy & Environmental Science,2019,12(5):1558-1567.
    [18]
    GOH K, KARAHAN H E, LI W, et al. Carbon nanomaterials for advancing separation membranes: A strategic perspective[J]. Carbon,2016,109:694-710. doi: 10.1016/j.carbon.2016.08.077
    [19]
    CHEN Y, SHI Y, KOU H, et al. Self-floating carbonized tissue membrane derived from commercial facial tissue for highly efficient solar steam generation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 2911-2915.
    [20]
    AIKIFA R, LU J Y, SAFA A, et al. Novel receiver-enhanced solar vapor generation: Review and perspectives[J]. Energies,2018,11(1):253. doi: 10.3390/en11010253
    [21]
    WU X, ROBSON M E, PHELPS J L, et al. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation[J]. Nano Energy,2018,56:708-715.
    [22]
    XU Y, LV B, YANG Y, et al. Facile fabrication of low-cost starch-based biohydrogel evaporator for efficient solar steam generation[J]. Desalination,2021,517:115260. doi: 10.1016/j.desal.2021.115260
    [23]
    LI Y, HONG W, LI H, et al. Solar absorber with tunable porosity to control the water supply velocity to accelerate water evaporation[J]. Desalination,2021,511(2):115113.
    [24]
    WANG Y, ZHANG L, WANG P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation[J]. ACS Sustainable Chemistry & Engineering,2016,4(3):1223-1230.
    [25]
    XU W, YUN X, LIU J, et al. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels[J]. ACS Nano,2019,13(7):7930-7938. doi: 10.1021/acsnano.9b02331
    [26]
    GONG F, HAO L, WANG W B, et al. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification[J]. Nano Energy,2019,58:322-330. doi: 10.1016/j.nanoen.2019.01.044
    [27]
    WANG X, HE Y, XING L, et al. Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films[J]. Powder Technology,2017,321:276-285. doi: 10.1016/j.powtec.2017.08.027
    [28]
    CONG C, GAO M, XING G, et al. Carbon nanomaterials treated by combination of oxidation and flash for highly efficient solar water evaporation[J]. Chemosphere,2021,277(4):130248.
    [29]
    GUO Y H, LU H Y, ZHAO F, et al. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Advanced Materials,2020,32(11):e1907061. doi: 10.1002/adma.201907061
    [30]
    ZHOU X, ZHAO F, GUO Y, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances,2019,5(6):eaaw5484. doi: 10.1126/sciadv.aaw5484
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (881) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return