Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LV Bingyi, WANG Shiyu, XIAO Jinyou, et al. A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2355-2364. doi: 10.13801/j.cnki.fhclxb.20220812.001
Citation: LV Bingyi, WANG Shiyu, XIAO Jinyou, et al. A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2355-2364. doi: 10.13801/j.cnki.fhclxb.20220812.001

A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model

doi: 10.13801/j.cnki.fhclxb.20220812.001
Funds:  Key Project of National Natural Science Foundation of China (52090051); The Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China and China Aerospace Science and Technology Corporation (U1837601); Key Research and Development Plan of Shaanxi Province (2021ZDLGY11-02); Youth Fund Project of National Natural Science Foundation of China (11902255)
  • Received Date: 2022-06-27
  • Accepted Date: 2022-08-05
  • Rev Recd Date: 2022-07-22
  • Available Online: 2022-08-12
  • Publish Date: 2023-04-15
  • The forming quality of thermoplastic composite preforms directly affects the manufacturing quality of structure. Due to the high melting temperature and viscosity of thermoplastic matrix, unreasonable design of forming process temperature will lead to forming defects such as wrinkles, which brings challenges to high-quality forming of thermoplastic composite structures. Currently, the existing researches on thermoforming of thermoplastic prepregs are mainly based on the continuous, the discrete and the semi-discrete approaches, the anisotropic large deformation behavior of thermoplastic prepreg is analyzed by establishing a multi-mechanism coupled constitutive model, which is not fully considered the influence of process control on wrinkle defects during forming macroscopic deformation. In this paper, a simulation method of forming wrinkle defects in thermoplastic prepregs in a wide temperature range was developed. By characterizing the mechanical properties of thermoplastic woven fabric prepregs at different temperatures and loads, the non-orthogonal constitutive model parameters of thermoplastic prepregs in a wide temperature range were obtained. The effect of temperature on forming wrinkle defects in thermoplastic prepregs was proposed, and the deformation mechanism of wrinkle defects in a wide temperature range in the forming process was revealed, and the optimal control scheme of forming temperature was obtained. The research results show that the initiation and evolution of wrinkle defects has been affected by the in-plane shear and compressive deformation behaviors at different temperatures, the deformation degree of wrinkle defects of prepreg has been decreased with the increase of temperature. The simulation results of the non-orthogonal constitutive model are basically closer to the experimental results.

     

  • loading
  • [1]
    洪旗, 史耀耀, 路丹妮, 等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报, 2019, 36(12):2822-2832. doi: 10.13801/j.cnki.fhclxb.20190304.003

    HONG Qi, SHI Yaoyao, LU Danni, et al. Multi-response parameter optimization for the composite tape winding process based on grey relational analysis and response surface methodology[J]. Acta Materiae Compositae Sinica,2019,36(12):2822-2832(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190304.003
    [2]
    TATSUNO D, YONEYAMA T, KAWAMOTO K, et al. Effect of cooling rate on the mechanical strength of carbon fiber-reinforced thermoplastic sheets in press forming[J]. Journal of Materials Engineering and Performance,2017,26(7):3482-3488. doi: 10.1007/s11665-017-2664-0
    [3]
    GONG Y, SONG Z, NING H, et al. A comprehensive review of characterization and simulation methods for thermo-stamping of 2D woven fabric reinforced thermoplastics[J]. Composites Part B: Engineering,2020,203:108462. doi: 10.1016/j.compositesb.2020.108462
    [4]
    DENIS Y, MORESTIN F, HAMILA N. A hysteretic model for fiber-reinforced composites at finite strains: Fractional derivatives, computational aspects and analysis[J]. Computational Materials Science,2020,181:109716. doi: 10.1016/j.commatsci.2020.109716
    [5]
    GUZMAN-MALDONADO E, HAMILA N, BOISSE P, et al. Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastics composites[J]. Composites Part A: Applied Science and Manufacturing,2015,78:211-222. doi: 10.1016/j.compositesa.2015.08.017
    [6]
    KÄRGER L, GALKIN S, DÖRR D, et al. Capabilities of macroscopic forming simulation for large-scale forming processes of dry and impregnated textiles[J]. Procedia Manufacturing,2020,47:140-147. doi: 10.1016/j.promfg.2020.04.155
    [7]
    VAN WEST B P, PIPES R B, KEEFE M. A simulation of the draping of bidirectional fabrics over arbitrary surfaces[J]. Journal of the Textile Institute,1990,81(4):448-460. doi: 10.1080/00405009008658722
    [8]
    JAUFFRÈS D, SHERWOOD J A, MORRIS C D, et al. Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming[J]. International Journal of Material Forming,2010,3(2):1205-1216.
    [9]
    HAMILA N, BOISSE P. Simulations of textile composite reinforcement draping using a new semi-discrete three node finite element[J]. Composites Part B: Engineering,2008,39(6):999-1010. doi: 10.1016/j.compositesb.2007.11.008
    [10]
    KHAN M A, MABROUKI T, VIDAL-SALLÉ E, et al. Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark[J]. Journal of Materials Processing Technology,2010,210(2):378-388. doi: 10.1016/j.jmatprotec.2009.09.027
    [11]
    PENG X Q, CAO J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics[J]. Composites part A: Applied Science and manufacturing,2005,36(6):859-874. doi: 10.1016/j.compositesa.2004.08.008
    [12]
    PENG X, DING F. Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation[J]. Composites Part A: Applied Science and Manufacturing,2011,42(4):400-407. doi: 10.1016/j.compositesa.2010.12.014
    [13]
    LIANG B, HAMILA N, PEILLON M, et al. Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations[J]. Composites Part A: Applied Science and Manufacturing,2014,67:111-122. doi: 10.1016/j.compositesa.2014.08.020
    [14]
    张衡. 编织碳纤维增强热塑性复合材料叠层模型及热冲压工艺研究[D]. 上海: 上海交通大学, 2017.

    ZHANG Heng. Lamination model and thermoforming process investigation of carbon woven fabric reinforced thermoplastic composites[D]. Shanghai: Shanghai Jiao Tong University, 2017(in Chinese).
    [15]
    李哲夫, 谈源, 张俭, 等. 热模压预成型工艺参数对复合材料帽型长桁质量的影响[J]. 复合材料学报, 2021, 38(10):3270-3280. doi: 10.13801/j.cnki.fhclxb.20201215.004

    LI Zhefu, TAN Yuan, ZHANG Jian, et al. Effects of hot stamp forming process parameters on quality of the hat-shaped structure preforms of composites[J]. Acta Materiae Compositae Sinica,2021,38(10):3270-3280(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201215.004
    [16]
    付掌印, 林大钧. 不可展曲面近似展开方法的合理性判断标准[J]. 工程图学学报, 2005, 26(6):36-40.

    FU Zhangyin, LIN Dajun. Some criteria for evaluating the methods of developing undevelopable curved surface[J]. Journal of Engineering Graphics,2005,26(6):36-40(in Chinese).
    [17]
    WANG P, HAMILA N, PINEAU P, et al. Thermomechanical analysis of thermoplastic composite prepregs using bias-extension test[J]. Journal of Thermoplastic Composite Materials,2014,27(5):679-698. doi: 10.1177/0892705712454289
    [18]
    BOISSE P, HAMILA N, GUZMAN-MALDONADO E, et al. The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: A review[J]. International Journal of Material Forming,2017,10(4):473-492. doi: 10.1007/s12289-016-1294-7
    [19]
    HARRISON P, CLIFFORD M J, LONG A C. Shear characterisation of viscous woven textile composites: A comparison between picture frame and bias extension experiments[J]. Composites Science and Technology,2004,64(10-11):1453-1465. doi: 10.1016/j.compscitech.2003.10.015
    [20]
    BOISSE P, HAMILA N, VIDAL-SALLÉ E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology,2011,71(5):683-692. doi: 10.1016/j.compscitech.2011.01.011
    [21]
    中国纺织工业协会. 纺织品 弯曲性能的测定 第1部分: 斜面法: GB/T 18318.1—2009[S]. 北京: 中国标准出版社, 2009.

    China National Textile and Apparel Council. Textiles—Determination of bending behavior—Part 1: Incline method: GB/T 18318.1—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [22]
    MACHADO M, MURENU L, FISCHLSCHWEIGER M, et al. Analysis of the thermomechanical shear behaviour of woven-reinforced thermoplastic-matrix composites during forming[J]. Composites Part A: Applied Science and Manufacturing,2016,86:39-48. doi: 10.1016/j.compositesa.2016.03.032
    [23]
    李林秀. 热塑性复合材料热冲压成型褶皱缺陷的形成机理研究[D]. 上海: 东华大学, 2020.

    LI Linxiu. Study on the formation mechanism of wrinkle defects in hot stamping of thermoplastic composites[D]. Shanghai: Donghua University, 2020(in Chinese).
    [24]
    ZHANG W, REN H, LIANG B, et al. A non-orthogonal material model of woven composites in the preforming process[J]. CIRP Annals,2017,66(1):257-260. doi: 10.1016/j.cirp.2017.04.112
    [25]
    BOISSE P, GASSER A, HIVET G. Analyses of fabric tensile behaviour: Determination of the biaxial tension-strain surfaces and their use in forming simulations[J]. Composites Part A: Applied Science and Manufacturing,2001,32(10):1395-1414. doi: 10.1016/S1359-835X(01)00039-2
    [26]
    CAO J, AKKERMAN R, BOISSE P, et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results[J]. Composites Part A: Applied Science and Manufacturing,2008,39(6):1037-1053. doi: 10.1016/j.compositesa.2008.02.016
    [27]
    LIANG B, SASA G A O, ZHANG W. An integrated preforming-performance model for high-fidelity performance analysis of cured woven composite part with non-orthogonal yarn angles[J]. Chinese Journal of Aeronautics,2022,35(6):367-378. doi: 10.1016/j.cja.2021.09.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (848) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return