Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
WAN Xingchen, HE Meiyu, WANG Weiya, et al. 3D graphene/CoO and the photocatalytic properties for hydrogen evolution from water splitting under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2836-2846. doi: 10.13801/j.cnki.fhclxb.20220803.005
Citation: WAN Xingchen, HE Meiyu, WANG Weiya, et al. 3D graphene/CoO and the photocatalytic properties for hydrogen evolution from water splitting under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2836-2846. doi: 10.13801/j.cnki.fhclxb.20220803.005

3D graphene/CoO and the photocatalytic properties for hydrogen evolution from water splitting under visible light irradiation

doi: 10.13801/j.cnki.fhclxb.20220803.005
Funds:  Natural Science Foundation of Hebei Province of China (E2020408004; B2022408005); Hebei Talent Engineering Training Support Project (A201901064); Hebei Higher Education Teaching Reform Research and Practice Project (2019 GJJG357); Project of Cultivating Scientific and Technological Innovation Capacities of College and Middle School Students (2021 H100402); Undergraduate Innovation and Entrepreneurship Training Program of Hebei Province (202110100001)
  • Received Date: 2022-05-27
  • Accepted Date: 2022-07-15
  • Rev Recd Date: 2022-07-07
  • Available Online: 2022-08-04
  • Publish Date: 2023-05-15
  • A three-dimensional cross-linked graphene (G) supported CoO nano composite (3D G/CoO) was prepared by solvothermal reaction followed by annealing at high temperature using graphene oxide and metal organic framework (ZIF-67) as precursors. The structures and morphologies of 3D G/CoO were characterized by XRD, XPS, UV-vis diffuse reflectance spectrum, SEM and TEM. The results show that CoO particles with an average particle size of ~34.5 nm are uniformly loaded on the graphene sheets. Based on the unique hot electron emission properties of 3D G, as well as the synergetic effect between the two components, 3D G/CoO nano composites exhibit excellent photocatalytic properties for hydrogen evolution from water splitting under the irradiation. Under 300 W Xenon lamp, the hydrogen production rate is 10.1 mmol·gcat−1·h−1. The apparent quantum efficiency of 7.77% is obtained at 520 nm visible light. After recycling for 5 times, the hydrogen production rate is maintained at 88%. This high-performance visible light responsive 3D photocatalyst is of great significance to the development of highly efficient catalysts in the field of photocatalysis.

     

  • loading
  • [1]
    FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38. doi: 10.1038/238037a0
    [2]
    HAN Z J, QIU F, EISENBERG R, et al. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst[J]. Science,2012,338(6112):1321-1324. doi: 10.1126/science.1227775
    [3]
    ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews,2016,116:7159-7329.
    [4]
    WANG X K, LIU J, ZHANG L, et al. Monometallic catalytic models hosted in stable metal-organic frameworks for tunable CO2 photoreduction[J]. ACS Catalysis,2019,9:1726-1732. doi: 10.1021/acscatal.8b04887
    [5]
    WU Y P, ZHOU W, ZHAO J, et al. Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction[J]. Angewandte Chemie International Edition,2017,56:13001-13005. doi: 10.1002/anie.201707238
    [6]
    LU J Q, ZHANG J, CHEN Q, et al. Porous CuS/ZnS microspheres derived from a bimetallic metal-organic framework as efficient photocatalysts for H2 production[J]. Journal of Photochemistry and Photobiology A-Chemistry,2019,380:111853.
    [7]
    LIN Y Z, WANG K, ZHANG Y, et al. Metal-organic framework-derived CdS-NiO heterostructures with modulated morphology and enhanced photocatalytic hydrogen evolution activity in pure water[J]. Journal of Materials Che-mistry C,2020,8:10071-10077. doi: 10.1039/C9TC07042G
    [8]
    LI N X, HUANG H L, BIBI R, et al. Noble-metal-free MOF derived hollow CdS/TiO2 decorated with NiS cocatalyst for efficient photocatalytic hydrogen evolution[J]. Applied Surface Science,2019,476:378-386. doi: 10.1016/j.apsusc.2019.01.105
    [9]
    KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews,2009,38:253-278. doi: 10.1039/B800489G
    [10]
    潘金波, 申升, 周威, 等. 光催化制氢研究进展[J]. 物理化学学报, 2020, 36(3):1905068. doi: 10.3866/PKU.WHXB201905068

    PAN Jinbo, SHEN Sheng, ZHOU Wei, et al. Recent progress in photocatalytic hydrogen evolution[J]. Acta Physico-Chimica Sinica,2020,36(3):1905068(in Chinese). doi: 10.3866/PKU.WHXB201905068
    [11]
    XIANG Q J, YU J G, JARONIEC M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews,2012,41:782-796. doi: 10.1039/C1CS15172J
    [12]
    XIAO N, LI S S, LI X L, et al. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen[J]. Chinese Journal of Catalysis,2020,41:642-671. doi: 10.1016/S1872-2067(19)63469-8
    [13]
    JIA Y L, WANG Z Z, QIAO X Q, et al. A synergistic effect between S-scheme heterojunction and noble-metal free cocatalyst to promote the hydrogen evolution of ZnO/CdS/MoS2 photocatalyst[J]. Chemical Engineering Journal,2021,424:130368. doi: 10.1016/j.cej.2021.130368
    [14]
    ZHANG Z W, LI Q H, QIAO X Q, et al. One-pot hydrothermal synthesis of willow branch-shaped MoS2/CdS heterojunctions for photocatalytic H2 production under visible light irradiation[J]. Chinese Journal of Catalysis,2019,40:371-379. doi: 10.1016/S1872-2067(18)63178-X
    [15]
    ZHANG X Y, LI H P, CUI X L, et al. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. Journal of Materials Chemistry C,2010,20:2801-2806. doi: 10.1039/b917240h
    [16]
    LI Q, GUO B D, YU J G, et al. Highly efficient visible light driven photocatalytic hydrogen production of CdS cluster decorated graphene nanosheets[J]. Journal of the American Chemical Society,2011,133:10878-10884. doi: 10.1021/ja2025454
    [17]
    IWASE A, YOSHINO S, TAKAYAMA T, et al. Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator[J]. Journal of the American Chemical Society,2016,138:10260-10264. doi: 10.1021/jacs.6b05304
    [18]
    XIANG Q J, YU J G, JARONIEC M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of the American Chemical Society,2012,134:6575-6578. doi: 10.1021/ja302846n
    [19]
    CHANG K, MEI Z W, WANG T, et al. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation[J]. ACS Nano,2014,8(7):7078-7087. doi: 10.1021/nn5019945
    [20]
    KUMAR D P, HONG S, REDDY D A, et al. Ultrathin MoS2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental,2017,212:7-14. doi: 10.1016/j.apcatb.2017.04.065
    [21]
    XIANG Q J, CHENG F Y, LANG D. Hierarchical layered WS2/graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution[J]. ChemSusChem,2016,9:996-1002. doi: 10.1002/cssc.201501702
    [22]
    LI W, WANG X, LI M, et al. Construction of Z-scheme and p-n heterostructure: Three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution[J]. Applied Catalysis B: Environmental,2020,268:118384. doi: 10.1016/j.apcatb.2019.118384
    [23]
    LI W, WANG X, MA Q, et al. CdS@h-BN heterointerface construction on reduced graphene oxide nanosheets for hydrogen production[J]. Applied Catalysis B: Environmental,2021,284:119688. doi: 10.1016/j.apcatb.2020.119688
    [24]
    LIU Y X, XU X J, ZHANG S F, et al. Ni single atoms anchored on nitrogen-doped graphene as H2-evolution cocatalyst of SrTiO3(Al)/CoOx for photocatalytic overall water splitting[J]. Carbon,2021,183:763-773. doi: 10.1016/j.carbon.2021.07.064
    [25]
    LU Y H, YANG Y, ZHANG T F, et al. Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis[J]. ACS Nano,2016,10(11):10507-10515. doi: 10.1021/acsnano.6b06472
    [26]
    LU Y H, MA B, YANG Y, et al. High activity of hot electrons from bulk 3D graphene materials for efficient photocatalytic hydrogen production[J]. Nano Research,2017,10(5):1662-1672. doi: 10.1007/s12274-016-1390-5
    [27]
    ZHANG T F, CHANG H C, WU Y P, et al. Macroscopic and direct light propulsion of bulk graphene material[J]. Nature Photonics,2015,9:471-477. doi: 10.1038/nphoton.2015.105
    [28]
    ZHANG L, LIANG J J, HUANG Y, et al. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation[J]. Carbon,2009,47(14):3365-3380. doi: 10.1016/j.carbon.2009.07.045
    [29]
    LU Y H, ZHANG F, ZHANG T F, et al. Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double N precursor[J]. Carbon,2013,63:508-516. doi: 10.1016/j.carbon.2013.07.026
    [30]
    BHATTACHARYAA P, JOO T, KOTAA M, et al. CoO nanoparticles deposited on 3D macroporous ozonized RGO networks for high rate capability and ultralong cyclability of pseudocapacitors[J]. Ceramics International,2018,44(1):980-987. doi: 10.1016/j.ceramint.2017.10.032
    [31]
    SUN Y M, HU X L, LUO W, et al. Ultrathin CoO/graphene hybrid nanosheets: A highly stable anode material for lithium-ion batteries[J]. Journal of Physical Chemistry C,2012,116(39):20794-20799. doi: 10.1021/jp3070147
    [32]
    WU Y P, YI N B, HUANG L, et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio[J]. Nature Communications,2015,6:1-9.
    [33]
    SHI W L, GUO F, WANG H B, et al. Carbon dots decorated the exposing high-reactive (111) facets CoO octahedrons with enhanced photocatalytic activity and stability for tetracycline degradation under visible light irradiation[J]. Applied Catalysis B: Environmental,2017,219:36-44. doi: 10.1016/j.apcatb.2017.07.019
    [34]
    王苹, 李海涛, 曹艳洁, 等. 羧基功能化石墨烯增强TiO2光催化产氢性能[J]. 物理化学学报, 2021, 37(6):200804.

    WANG Ping, LI Haitao, CAO Yanjie, et al. Carboxyl-functionalized graphene for highly efficient H2-evolution activity of TiO2 photocatalyst[J]. Acta Physico-Chimica Sinica,2021,37(6):200804(in Chinese).
    [35]
    董玉培, 牟志刚, 杜玉扣, 等. 4-二苯胺基苯甲醇功能化石墨烯的制备、电子传递及光催化性能[J]. 化学学报, 2011, 69(20):2379-2384.

    DONG Yupei, MOU Zhigang, DU Yukou, et al. Preparation, electron transfer and photocatalysis of 4-(N, N-diphenylamine)benzyl alcohol functionalized graphene[J]. Acta Chimica Sinica,2011,69(20):2379-2384(in Chinese).
    [36]
    贾并泉, 叶斌, 赵伟, 等. 金属相1 T′ MoS2增强类石墨相C3N4的可见光催化性能[J]. 高等学校化学学报, 2021, 42(2):615-623. doi: 10.7503/cjcu20200626

    JIA Bingquan, YE Bin, ZHAO Wei, et al. Metallic 1 T′ MoS2 boosts graphitic C3N4 for efficient visible-light photocatalysis[J]. Chemical Journal of Chinese Universities,2021,42(2):615-623(in Chinese). doi: 10.7503/cjcu20200626
    [37]
    郭宇, 李燕瑞, 王成名, 等. TiO2/石墨烯复合材料的光生电荷分离调控与光催化产氢性能研究[J]. 化学学报, 2019, 77:520-524. doi: 10.6023/A19040108

    GUO Yu, LI Yanrui, WANG Chengming, et al. Photogenerated charge separation and photocatalytic hydrogen production of TiO2/graphene composite materials[J]. Acta Chimica Sinica,2019,77:520-524(in Chinese). doi: 10.6023/A19040108
    [38]
    WANG Z J, LIU Z, CHEN J Z, et al. Self-assembly of three-dimensional CdS nanosphere/graphene networks for efficient photocatalytic hydrogen evolution[J]. Journal of Energy Chemistry,2019,31:34-38. doi: 10.1016/j.jechem.2018.05.006
    [39]
    程若霖, 金锡雄, 樊向前, 等. 氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性[J]. 物理化学学报, 2017, 33(7):1436-1445. doi: 10.3866/PKU.WHXB201704076

    CHENG Ruolin, JIN Xixiong, FAN Xiangqian, et al. Incorporation of N-doped reduced graphene oxide into pyridine-copolymerized g-C3N4 for greatly enhanced H2 photocatalytic evolution[J]. Acta Physico-Chimica Sinica,2017,33(7):1436-1445(in Chinese). doi: 10.3866/PKU.WHXB201704076
    [40]
    李向群, 司瑞如. 一种以还原氧化石墨烯为电子中继体的复合光催化剂的合成及光催化性能研究[J]. 化学通报, 2020, 839(11):1019-1024.

    LI Xiangqun, SI Ruiru. Synthesis and photocatalytic pro-perties of a composite photocatalyst with reduced graphene oxide as electron mediator[J]. Chemistry Bulletin,2020,839(11):1019-1024(in Chinese).
    [41]
    何慧娟, 张斌, 钟梓俊, 等. Ag-NaTaO3-RGO 复合物的合成及其改进的光催化制氢性能[J]. 无机化学学报, 2018, 32(2):397-403. doi: 10.11862/CJIC.2018.015

    HE Huijuan, ZHANG Bin, ZHONG Zijun, et al. Ag-NaTaO3-RGO composite: Synthesis and improved photocatalytic hydrogen production property[J]. Chinese Journal of Inorganic Chemistry,2018,32(2):397-403(in Chinese). doi: 10.11862/CJIC.2018.015
    [42]
    张晓艳, 李浩鹏, 崔晓莉. TiO2/石墨烯复合材料的合成及光催化分解水产氢活性[J]. 无机化学学报, 2009, 25(11):1903-1907. doi: 10.3321/j.issn:1001-4861.2009.11.003

    ZHANG Xiaoyan, LI Haopeng, CUI Xiaoli. Preparation and photocatalytic activity for hydrogen evolution of TiO2/graphene sheets composite[J]. Chinese Journal of Inorga-nic Chemistry,2009,25(11):1903-1907(in Chinese). doi: 10.3321/j.issn:1001-4861.2009.11.003
    [43]
    郭跃萍, 吕功煊. 原位合成石墨烯负载的Co-P催化剂及光解水制氢[J]. 无机化学学报, 2016, 32(7):1177-1182. doi: 10.11862/CJIC.2016.152

    GUO Yueping, LV Gongxuan. In situ synthesis of Co-P/GP photocatalysts for H2 evolution from water[J]. Chinese Journal of Inorganic Chemistry,2016,32(7):1177-1182(in Chinese). doi: 10.11862/CJIC.2016.152
    [44]
    崔文权, 刘利, 冯良荣, 等. Pt/K2La2Ti3O10催化剂的合成及其光催化分解甲醇水溶液制氢[J]. 中国科学B辑:化学, 2006, 36(2):139-144.

    CUI Wenquan, LIU Li, FENG Liangrong, et al. Synthesis of Pt/K2La2Ti3O10 catalyst and its photocatalytic decomposition of methanol aqueous solution to hydrogen[J]. Science in China Series B: Chemistry,2006,36(2):139-144(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (960) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return