Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
LU Xiaojie, XU Jing, YANG Ke, et al. Surface network modification of carbon nanofibers and its application in zinc ion batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2731-2740. doi: 10.13801/j.cnki.fhclxb.20220728.002
Citation: LU Xiaojie, XU Jing, YANG Ke, et al. Surface network modification of carbon nanofibers and its application in zinc ion batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2731-2740. doi: 10.13801/j.cnki.fhclxb.20220728.002

Surface network modification of carbon nanofibers and its application in zinc ion batteries

doi: 10.13801/j.cnki.fhclxb.20220728.002
Funds:  China Postdoctoral Science Foundation (2019 T120189); China Postdoctoral Foundation (2018 M640240)
  • Received Date: 2022-05-31
  • Accepted Date: 2022-07-08
  • Rev Recd Date: 2022-06-26
  • Available Online: 2022-07-29
  • Publish Date: 2023-05-15
  • Rechargeable water zinc-manganese battery has a wide application prospect in large-scale energy storage due to its high safety, low cost and environmental friendliness. However, due to poor conductivity of manganese oxide and dissolving in water due to disproportionation reaction during battery charging and discharging, the battery has low capacity and poor cycle stability. In this paper, the carbon nanofiber (CSCNFs) composite material with raised structure and conductive network was prepared by double-needle pair spinning electrostatic spinning technology, combined with pre-oxidation and high temperature annealing process, and the surface of carbon nanofiber was modified by doping carbon nanotube (CNTs) and conductive carbon black (Super-P). MnO2@CSCNFs cathode was prepared by loading α-MnO2 active substance on the fiber surface. CNTs and Super-P doping were modified on the surface of carbon nanofibers. Among them, CNTs and Super-P cooperated to construct conductive network channels with node structure to realize efficient electron-ion cooperative transport. With the cathode of MnO2@CSCNFs zinc ion battery kinetics and electrochemical performance is significantly improved, the initial capacity reaches 784.8 mA·h·g−1, and after 100 cycle remain discharge specific capacity of 500 mA·h·g−1. The discharge specific capacity of 290.8 mA·h·g−1 is maintained at a high current density of 2 A·g−1, and the capacity recovery rate is up to 96.33% when the current density is restored to 0.1 A·g−1.

     

  • loading
  • [1]
    ZHOU H J, SONG C L, SI L P, et al. The development of catalyst materials for the advanced lithium-sulfur battery[J]. Catalysts,2020,10(6):682-698. doi: 10.3390/catal10060682
    [2]
    夏傲, 曾啸雄, 宜珏, 等. Ag/MnO2复合电极材料的制备及其电化学性能[J]. 复合材料学报, 2022, 39(5):2269-2279.

    XIA Ao, ZENG Xiaoxiong, YI Jue, et al. Preparation and electrochemical properties of Ag/MnO2 composite electrode materials[J]. Acta Materiae Compositae Sinica,2022,39(5):2269-2279(in Chinese).
    [3]
    BORCHERS N, CLARK S, HORSTMANN B, et al. Innovative zinc-based batteries[J]. Journal of Power Sources,2021,484:229309. doi: 10.1016/j.jpowsour.2020.229309
    [4]
    HARUDIN N, OSMAN Z, MAJID S R, et al. Improved electrochemical properties of MgMn2O4 cathode materials by Sr doping for Mg ion cells[J]. Ionics,2020,26(8):3947-3958. doi: 10.1007/s11581-020-03531-7
    [5]
    LUO M H, YU H X, HU F Y, et al. Metal selenides for high performance sodium ion batteries[J]. Chemical Engineering Journal,2020,380:122557. doi: 10.1016/j.cej.2019.122557
    [6]
    SMITH B D, WILLS R G A, CRUDEN A J. Aqueous Al-ion cells and supercapacitors–A comparison[J]. Energy Reports,2020,6:166-173.
    [7]
    黄兰香, 罗旭峰. 用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极[J]. 复合材料学报, 2022, 39(10):4631-4641.

    HUANG Lanxiang, LUO Xufeng. Advanced Ti3C2@ε-MnO2 cathode as rechargeable aqueous zinc-ion batteries[J]. Acta Materiae Compositae Sinica,2022,39(10):4631-4641(in Chinese).
    [8]
    LIU X, EUCHNER H, ZARRABEITIA M, et al. Operando pH measurements decipher H+/Zn2+ intercalation chemistry in high-performance aqueous Zn/δ-V2O5 batteries[J]. ACS Energy Letters,2020,5(9):2979-2986. doi: 10.1021/acsenergylett.0c01767
    [9]
    ZHANG W H, ZHAI X L, ZHANG Y S, et al. Application of manganese-based materials in aqueous rechargeable zinc-ion batteries[J]. Frontiers in Energy Research,2020,8:00195. doi: 10.3389/fenrg.2020.00195
    [10]
    FAN X Y, YANG H, NI K F, et al. Electrochemical controllable synthesis of MnO2 as cathode of rechargeable zinc-ion battery[J]. Functional Materials Letters,2020,13(3):2050011. doi: 10.1142/S1793604720500113
    [11]
    LEE S Y, WU L J, POYRAZ A S, et al. Lithiation mechanism of tunnel-structured MnO2 electrode investigated by in situ transmission electron microscopy[J]. Advanced Materials,2017,29(43):1703186. doi: 10.1002/adma.201703186
    [12]
    CAI Y, CHUA R, HUANG S Z, et al. Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery[J]. Chemical Engineering Journal,2020,396:125221. doi: 10.1016/j.cej.2020.125221
    [13]
    HUANG L X, LUO X F, CHEN C, et al. A high specific capacity aqueous zinc-manganese battery with a ε-MnO2 cathode[J]. Ionics,2021,27(9):3933-3941. doi: 10.1007/s11581-021-04160-4
    [14]
    LIU W B, ZHANG X Y, HUANG Y F, et al. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery[J]. Journal of Energy Chemistry,2021,56:365-373. doi: 10.1016/j.jechem.2020.07.027
    [15]
    ZHAO L, DONG L B, LIU W B, et al. Binary and ternary manganese dioxide composites cathode for aqueous zinc-ion battery[J]. ChemistrySelect,2018,3(44):12661-12665. doi: 10.1002/slct.201802954
    [16]
    TANG X N, ZHU S K, NING J, et al. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review[J]. New Carbon Materials,2021,36(4):702-708. doi: 10.1016/S1872-5805(21)60082-3
    [17]
    WEI X B, YUAN H C, WANG H J, et al. The metal-organic framework mediated synthesis of bell string-like hollow ZnS-C nanofibers to enhance sodium storage performance[J]. Materials Chemistry Frontiers,2021,5(12):4712-4724. doi: 10.1039/D1QM00423A
    [18]
    MASSA-ANGKUL N, KNIJNENBURG J T N, KASEMSIRI P, et al. Electrophoretic deposition of carbon nanotubes onto zinc substrates for electrode applications[J]. Sains Malaysiana,2020,49(11):2811-2820. doi: 10.17576/jsm-2020-4911-20
    [19]
    BORUAH B D, MATHIESON A, PARK S K, et al. Vanadium dioxide cathodes for high-rate photo-rechargeable zinc-ion batteries[J]. Advanced Energy Materials,2021,11(13):2100115. doi: 10.1002/aenm.202100115
    [20]
    CANG R B, YE K, ZHU K, et al. Organic 3D interconnected graphene aerogel as cathode materials for high-performance aqueous zinc ion battery[J]. Journal of Energy Chemistry,2020,45:52-58. doi: 10.1016/j.jechem.2019.09.026
    [21]
    ZHOU J H, XIE M, WU F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries[J]. Advanced Materials,2021,33(33):2101649. doi: 10.1002/adma.202101649
    [22]
    YU H, CHEN L, LI W X, et al. Root-whisker structured 3D CNTs-CNFs network based on coaxial electrospinning: A free-standing anode in lithium-ion batteries[J]. Journal of Alloys and Compounds,2021,863:158481. doi: 10.1016/j.jallcom.2020.158481
    [23]
    LI Z X, LIU L, LI L D, et al. In situ synthesis of ZnFe2O4 rough nanospheres on carbon nanofibers as an efficient titanium mesh substrate counter electrode for triiodide reduction in dye-sensitized solar cells[J]. Applied Surface Science,2021,541:148429. doi: 10.1016/j.apsusc.2020.148429
    [24]
    PASCARIU P, HOMOCIANU M. ZnO-based ceramic nanofibers: Preparation, properties and applications[J]. Ceramics International,2019,45(9):11158-11173. doi: 10.1016/j.ceramint.2019.03.113
    [25]
    KONG L Q, LIU H, CAO W Y, et al. PAN fiber diameter effect on the structure of PAN-based carbon fibers[J]. Fibers and Polymers,2014,15(12):2480-2488. doi: 10.1007/s12221-014-2480-1
    [26]
    WU F, GAO X, XU X, et al. Boosted Zn storage performance of MnO2 nanosheet-assembled hollow polyhedron grown on carbon cloth via a facile wet-chemical synthesis[J]. ChemSusChem,2019,13(6):1537-1545.
    [27]
    CHEN H, DAI C, XIAO F, et al. Reunderstanding the reaction mechanism of aqueous Zn-Mn batteries with sulfate electrolytes: Role of the zinc sulfate hydroxide[J]. Advanced Materials,2022,34(15):e2109092. doi: 10.1002/adma.202109092
    [28]
    ZHANG Y A, LIU Y P, LIU Z H, et al. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries[J]. Journal of Energy Chemistry,2022,64:23-32. doi: 10.1016/j.jechem.2021.04.046
    [29]
    LI S, LIU Y, ZHAO X, et al. Sandwich-like heterostructures of MoS2 graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries[J]. Advanced Materials,2021,33(12):e2007480. doi: 10.1002/adma.202007480
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (801) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return