Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Peng, WANG Xin, LI Zhi. Research progress in piezoelectric catalysis of barium titanate nanomaterials[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1285-1299. doi: 10.13801/j.cnki.fhclxb.20220629.002
Citation: ZHANG Peng, WANG Xin, LI Zhi. Research progress in piezoelectric catalysis of barium titanate nanomaterials[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1285-1299. doi: 10.13801/j.cnki.fhclxb.20220629.002

Research progress in piezoelectric catalysis of barium titanate nanomaterials

doi: 10.13801/j.cnki.fhclxb.20220629.002
Funds:  Youth Fund of National Natural Science Foundation of China (51802246)
  • Received Date: 2022-05-10
  • Accepted Date: 2022-06-22
  • Rev Recd Date: 2022-06-08
  • Available Online: 2022-06-30
  • Publish Date: 2023-03-15
  • The rapid development of society has brought huge economic benefits, but also brought a series of ecological environment problems, such as water pollution, air pollution and pollutant discharge. Catalytic degradation is considered as an effective strategy to deal with various kinds of pollution. Compared with traditional photocatalysis, piezoelectric catalysis is a new catalytic method proposed in recent years. Through the piezoelectric catalytic convert mechanical energy into chemical energy is an effective means of solving the water pollution problem, large numbers of piezoelectric materials have been applied in the research of catalytic degradation of piezoelectric, including BaTiO3 nano powder as a kind of typical piezoelectric material, because of low cost, the advantages of strong piezoelectric activity, caused the wide attention of researchers. In this paper, the theory and origin of piezoelectric catalysis are summarized, some commonly used piezoelectric catalysis materials are listed and their applications are illustrated. Around BaTiO3, the basic structure, common preparation methods of nano-BaTiO3 powder, application in piezoelectric catalysis and some typical modification methods are introduced. Finally, the future development trend of BaTiO3-based nano-powders in piezoelectric catalysis field is prospected.

     

  • loading
  • [1]
    FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38.
    [2]
    XU X L, XIAO L B, WU Z, et al. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite[J]. Nano Energy,2020,78:105351. doi: 10.1016/j.nanoen.2020.105351
    [3]
    FENG J X, SUN J X, LIU X S, et al. Enhancement and mechanism of nano-BaTiO3 piezocatalytic degradation of tricyclazole by co-loading Pt and RuO2[J]. Environmental Science: Nano,2019,6:2241-2252. doi: 10.1039/C9EN00367C
    [4]
    YANG B, WU C, WANG J W, et al. When C3N4 meets BaTiO3: Ferroelectric polarization plays a critical role in building a better photocatalyst[J]. Ceramics International,2020,46:4248-4255. doi: 10.1016/j.ceramint.2019.10.145
    [5]
    ZHU P, CHEN Y, SHI J L. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity[J]. Advanced Materials,2020,32(29):2001976. doi: 10.1002/adma.202001976
    [6]
    NIE Q, XIE Y F, MA J M, et al. High piezo-catalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment[J]. Journal of Cleaner Production,2020,242:118532. doi: 10.1016/j.jclepro.2019.118532
    [7]
    WANG B, ZHANG Q, HE J Q, et al. Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water[J]. Journal of Energy Che-mistry,2022,65:304-311. doi: 10.1016/j.jechem.2021.06.004
    [8]
    KANG Z H, KE K H, LIN E Z, et al. Piezoelectric polarization modulated novel Bi2WO6/g-C3N4/ZnO Z-scheme heterojunctions with g-C3N4 intermediate layer for efficient piezo-photocatalytic decomposition of harmful organic pollutants[J]. Journal of Colloid and Interface Science,2022,607:1589-1602. doi: 10.1016/j.jcis.2021.09.007
    [9]
    FENG Y W, LING L L, WANG Y X, et al. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis[J]. Nano Energy,2017,40:481-486. doi: 10.1016/j.nanoen.2017.08.058
    [10]
    ZHOU C, LIU W C, LI H Q, et al. Separable magnetic Fe3O4@MoS2 composite for adsorption and piezo-catalytic degradation of dye[J]. Catalysts,2021,11(11):1403. doi: 10.3390/catal11111403
    [11]
    LI S, ZHAO Z C, YU D F, et al. Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect[J]. Nano Energy,2019,66:104083. doi: 10.1016/j.nanoen.2019.104083
    [12]
    LEI R, GAO F, YUAN J, et al. Free layer-dependent piezoelectricity of oxygen-doped MoS2 for the enhanced piezocatalytic hydrogen evolution from pure water[J]. Applied Surface Science,2022,576:151851. doi: 10.1016/j.apsusc.2021.151851
    [13]
    DONG C Y, FU Y M, ZANG W L, et al. Self-powering/self-cleaning electronic-skin basing on PVDF/TiO2 nanofibers for actively detecting body motion and degrading organic pollutants[J]. Applied Surface Science,2017,416:424-431. doi: 10.1016/j.apsusc.2017.04.188
    [14]
    赁敦敏, 肖定全, 朱建国, 等. 新型无铅压电陶瓷的研制[J]. 电子元件与材料, 2004, 23(11):13-15. doi: 10.3969/j.issn.1001-2028.2004.11.005

    LIN D M, XIAO D Q, ZHU J G, et al. The development of a new Lead-free piezoelectric ceramics[J]. Electronic Components and Materials,2004,23(11):13-15(in Chinese). doi: 10.3969/j.issn.1001-2028.2004.11.005
    [15]
    CURIE J, CURIE P. Development by pressure of polar electricity in hemihedral crystals with inclined faces[J]. Bulletin de la Societe Mathematique de France, 1880, 3: 90.
    [16]
    HONG K S, XU H F, KONISHI H, et al. Direct water splitting through vibrating piezoelectric microfibers in water[J]. Journal of Physical Chemistry Letters,2010,1(6):997-1002. doi: 10.1021/jz100027t
    [17]
    HONG K S, XU H F, KONISHI H, et al. Piezo-electrochemical effect: A new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers[J]. The Journal of Physical Chemistry C,2012,116(24):13045-13051. doi: 10.1021/jp211455z
    [18]
    TU S, GUO Y, ZHANG Y, et al. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application[J]. Advanced Functional Materials,2020,30(48):2005158. doi: 10.1002/adfm.202005158
    [19]
    STARR M B, WANG X. Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials[J]. Scientific Reports,2013,3(1):1-8.
    [20]
    LIANG Z, YAN C F, RTIMI S, et al. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook[J]. Applied Catalysis B: Environmental,2019,241:256-269. doi: 10.1016/j.apcatb.2018.09.028
    [21]
    CROSS L, NEWNHAM R. History of ferroelectrics[J]. Ceramics and Civilization,1987,3:289-305.
    [22]
    PARK K I, XU S, LIU Y, et al. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates[J]. Nano Letters,2010,10:4939-4943. doi: 10.1021/nl102959k
    [23]
    SCHOFIELD D, BROWN R F. An investigation of some barium titanate compositions for transducer applications[J]. Canadian Journal of Physics,1957,35:594-607. doi: 10.1139/p57-067
    [24]
    KIM H, TORRES F, VILLAGRAN D, et al. 3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications[J]. Macromolecular Materials and Engineering,2017,302:1700229. doi: 10.1002/mame.201700229
    [25]
    郭文哲. 电纺微纳米纤维材料在压电传感器及柔性可拉伸电极中的应用[D]. 青岛: 青岛大学, 2019.

    GUO W Z. Application of electrospinning micronanofiber materials in piezoelectric sensor and flexible stretchable electrode[D]. Qingdao: Master's thesis of Qingdao University, 2019(in Chinese).
    [26]
    KAPPADAN S, GEBREAB T W, THOMAS S, et al. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants[J]. Materials Science in Semiconductor Processing,2016,51:42-47. doi: 10.1016/j.mssp.2016.04.019
    [27]
    CHEN L, JIA Y, ZHAO J, et al. Strong piezocatalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition[J]. Journal of Colloid and Interface Science,2021,586:758-765. doi: 10.1016/j.jcis.2020.10.145
    [28]
    WANG X D, SUMMERS C J, WANG Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays[J]. Nano Letters,2004,4(3):423-426. doi: 10.1021/nl035102c
    [29]
    CHOI M Y, CHOI D Y, JIN M J, et al. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods[J]. Advanced Materials,2009,21:2185-2189. doi: 10.1002/adma.200803605
    [30]
    MA J P, REN J, JIA Y M, et al. High efficiency biharvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition[J]. Nano Energy,2019,62:376-383. doi: 10.1016/j.nanoen.2019.05.058
    [31]
    WANG S S, WU Z, CHEN J, et al. Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation[J]. Ceramics International,2019,45:11703-11708. doi: 10.1016/j.ceramint.2019.03.045
    [32]
    WANG L K, WANG J F, YE C Y, et al. Photodeposition of CoOx nanoparticles on BiFeO3 nanodisk for efficiently piezocatalytic degradation of rhodamine B by utilizing ultrasonic vibration energy[J]. Ultrasonics Sonochemistry,2021,80:105813. doi: 10.1016/j.ultsonch.2021.105813
    [33]
    LIN H, WU Z, JIA Y, et al. Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers[J]. Applied Physics Letters,2014,104(16):162907. doi: 10.1063/1.4873522
    [34]
    ZHOU Z H, LIN Y L, ZHANG P A, et al. Hydrothermal fabrication of porous MoS2 and its visible light photocatalytic properties[J]. Materials Letters,2014,131:122-124. doi: 10.1016/j.matlet.2014.05.162
    [35]
    WU J M, CHANG W E, CHANG Y T, et al. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers[J]. Advanced Materials,2016,28(19):3718-3725. doi: 10.1002/adma.201505785
    [36]
    CHEN T, MENG J, WU S, et al. Room temperature synthesized BaTiO3 for photocatalytic hydrogen evolution[J]. Journal of Alloys and Compounds,2018,754:184-189. doi: 10.1016/j.jallcom.2018.04.300
    [37]
    DEMIRCIVI P, GULEN B, SIMSEK E, et al. Enhanced photocatalytic degradation of tetracycline using hydrothermally synthesized carbon fiber decorated BaTiO3[J]. Materials Chemistry and Physics,2020,241:122236. doi: 10.1016/j.matchemphys.2019.122236
    [38]
    JIANG B, IOCOZZIA J, ZHAO L, et al. Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties[J]. Chemical Society Review,2019,48:1194-1228. doi: 10.1039/C8CS00583D
    [39]
    PAN L, SUN S, CHEN Y, et al. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis[J]. Advanced Energy Materials,2020,10:1-25.
    [40]
    ZHANG G, LIU G, WANG L, et al. Inorganic perovskite photocatalysts for solar energy utilization[J]. Chemical Society Reviews,2016,45:5951-5984. doi: 10.1039/C5CS00769K
    [41]
    ZHANG S W, ZHANG B P, LI S, et al. SPR enhanced photocatalytic properties of Au-dispersed amorphous BaTiO3 nanocomposite thin films[J]. Journal of Alloys and Compounds,2016,654:112-119. doi: 10.1016/j.jallcom.2015.09.053
    [42]
    KUMAR S, SHARMA M, POWAR S, et al. Impact of remnant surface polarization on photocatalytic and antibacterial performance of BaTiO3[J]. Journal of the European Cera-mic Society,2019,39:2915-2922. doi: 10.1016/j.jeurceramsoc.2019.03.029
    [43]
    YADAV A A, HUNGE Y M, MATHE V L, et al. Photocatalytic degradation of salicylic acid using BaTiO3 photocatalyst under ultraviolet light illumination[J]. Journal of Materials Science Materials in Electronics,2018,29:15069-15073. doi: 10.1007/s10854-018-9646-3
    [44]
    CORDERO F. Quantitative evaluation of the piezoelectric response of unpoled ferroelectric ceramics from elastic and dielectric measurements: Tetragonal BaTiO3[J]. Jour-nal of Applied Physics,2018,123(9):94-103.
    [45]
    XU X, WU Z, XIAO L, et al. Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis[J]. Journal of Alloys and Compounds,2018,762:915-921. doi: 10.1016/j.jallcom.2018.05.279
    [46]
    TANAKA H, MISANO M. Advances in designing perovskite catalysts[J]. Current Opinion in Solid State & Materials Science,2001,5(5):381-387. doi: 10.1016/S1359-0286(01)00035-3
    [47]
    KOWALSKI D, KIUCHI H, MOTOHASHI T, et al. Activation of cataly tically active edge. sharing domains in Ca2FCoO3 for oxygen evolution reaction in highly alkaline media[J]. ACS Applied Materials & Interfaces,2019,11(32):28823-28829. doi: 10.1021/acsami.9b06854
    [48]
    LEE W W, CHUNG W H, HUANG W S, et al. Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method[J]. Journal of the Taiwan Institute of Chemical Engineers,2013,44(4):660-669. doi: 10.1016/j.jtice.2013.01.005
    [49]
    BAO N, SHEN L, SRINIVASAN G, et al. Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures[J]. Journal of Physical Chemistry C,2008,112(23):8634-8642. doi: 10.1021/jp802055a
    [50]
    JIAO H, ZHAO K, MA L, et al. A simple one-step hydrothermal synthesis and photocatalysis of bowl-like BaTiO3 nanoparticles[J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry,2016,47(5):647-654.
    [51]
    WANG P, FAN C, WANG Y, et al. A dual chelating sol-gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water[J]. Materials Research Bulletin,2013,48(2):869-877. doi: 10.1016/j.materresbull.2012.11.075
    [52]
    MI L, ZHANG Q, WANG H, et al. Synthesis of BaTiO3 nanoparticles by sol-gel assisted solid phase method and its formation mechanism and photocatalytic activity[J]. Ceramics International,2020,46(8):10619-10633. doi: 10.1016/j.ceramint.2020.01.066
    [53]
    CHEN Y H, CHEN Y D. Kinetic study of Cu(II) adsorption on nanosized BaTiO3 and SrTiO3 photocatalysts[J]. Jour-nal of Hazardous Materials,2011,185(1):168-173. doi: 10.1016/j.jhazmat.2010.09.014
    [54]
    LI H, SUN Y, ZHANG W, et al. Preparation of heterostructured Ag/BaTiO3 nanofibers via electrospinning[J]. Jour-nal of Alloys and Compounds,2010,508(2):536-539.
    [55]
    REN P, FAN H, WANG X. Electrospun nanofibers of ZnO/BaTiO3 heterostructures with enhanced photocatalytic activity[J]. Catalysis Communications,2012,25:32-35. doi: 10.1016/j.catcom.2012.04.003
    [56]
    LI J, INUKAI K, TAKAHASHI Y, et al. Synthesis and size control of monodispersed BaTiO3-PVP nanoparticles[J]. Journal of Asian Ceramic Societies,2016,4(4):394-402. doi: 10.1016/j.jascer.2016.09.001
    [57]
    WU J, QIN N, BAO D, et al. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration[J]. Nano Energy,2018,45:44-51. doi: 10.1016/j.nanoen.2017.12.034
    [58]
    CHAROONSUK T, SRIPHAN S, NAWANIL C, et al. Tetragonal BaTiO3 nanowires: A template-free salt-flux-assisted synthesis and its piezoelectric response based on mecha-nical energy harvesting[J]. Journal of Materials Chemistry C,2019,7(27):8277-8286. doi: 10.1039/C9TC01622H
    [59]
    XUE P, WU H, XIA W, et al. Molten salt synthesis of BaTiO3 nanorods: Dielectric, optical properties and structural characterizations[J]. Journal of the American Ceramic Society,2018,3:1508-1563.
    [60]
    LIU X F, XIAO L Y, ZHANG Y, et al. Signifificantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye[J]. Journal of Materiomics,2020,6:256-262. doi: 10.1016/j.jmat.2020.03.004
    [61]
    LI P C, WU J, WU Z, et al. Strong tribocatalytic dye decomposition through utilizing triboelectric energy of barium strontium titanate nanoparticles[J]. Nano Energy,2019,63:103832. doi: 10.1016/j.nanoen.2019.06.028
    [62]
    刘海波, 阎建辉. 钛酸钡的制备及光催化性能研究[J]. 湖南理工学院学报, 2007, 20(4):76-79.

    LIU H B, YAN J H. Preparation and photocatalytic properties of Barium titanate[J]. Journal of Hunan Institute of Science and Technology,2007,20(4):76-79(in Chinese).
    [63]
    赵锐. 改性静电纺高分子纳米纤维对水中典型污染物的吸附研究[D]. 长春: 吉林大学, 2018.

    ZHAO R. The adsorption of modified electrospinning polymer nanofibers to typical pollutants in water[D]. Changchun: Jilin University, 2018(in Chinese).
    [64]
    YOUSEF A, BROOKS R M, ABDELKAREEM M A, et al. Electrospun NiCu nanoalloy decorated on carbon nanofibers as chemical stable electrocatalyst for methanol oxidation[J]. ECS Electrochemistry Letters,2015,4(9):F51-F55. doi: 10.1149/2.0091509eel
    [65]
    WEN S, LIANG M, ZOU J, et al. Synthesis of a SiO2 nano-fibre confined Ni catalyst by electrospinning for the CO2 reforming of methane[J]. Journal of Materials Chemistry A,2015,3(25):13299-13307. doi: 10.1039/C5TA01699A
    [66]
    WU J R, WANG W W, TIAN Y, et al. Piezotronic effect boosted photocatalytic performance of heterostructured BaTi3/TiO2 nanofibers for degradation of organic pollutants[J]. Nano Energy,2020,77:105122. doi: 10.1016/j.nanoen.2020.105122
    [67]
    YU C Y, TAN M X, LI Y, et al. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering[J]. Journal of Colloid and Interface Science,2021,596:288-296. doi: 10.1016/j.jcis.2021.03.040
    [68]
    CUI Y, BRISCOE J, DUNN S. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3—Influence on the carrier separation and stern layer formation[J]. Chemistry of Materials,2013,25(21):4215-4223. doi: 10.1021/cm402092f
    [69]
    LIU D, JIN C, SHAN F, et al. Synthesizing BaTiO3 nanostructures to explore morphological influence, kinetics, and mechanism of piezocatalytic dye degradation[J]. ACS Applied Materials & Interfaces,2020,12(15):17443-17451. doi: 10.1021/acsami.9b23351
    [70]
    RAN J R, ZHANG J, YU J G, et al. Earth-abundant cocatalysts for semiconductorbased photocatalytic water splitting[J]. Chemistry Society Review,2014,43(22):7787. doi: 10.1039/C3CS60425J
    [71]
    HISATOMI T, KUBOTA J, DOMEN K. Recent advances in semiconductors for photocatalytic and photoelectroche-mical water splitting[J]. Chemistry Society Review,2014,43(22):7520-7535. doi: 10.1039/C3CS60378D
    [72]
    YANG L, LUO S, YUE L, et al. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst[J]. Environmental Science & Technology,2010,44(19):7641-7646.
    [73]
    WANG Y P, YANG H, SUN X F, et al. Preparation and photocatalytic application of ternary n-BaTiO3/Ag/p-AgBr heterostructured photocatalysts for dye degradation[J]. Materials Research Bulletin,2020,124:110754. doi: 10.1016/j.materresbull.2019.110754
    [74]
    LV J X, CHEN X L, CHEN S S, et al. A visible light induced ultrasensitive photoelectrochemical sensor based on Cu3Mo2O9/BaTiO3 p-n heterojunction for detecting oxytetracycline[J]. Journal of Electroanalytical Chemistry,2019,842:161-167. doi: 10.1016/j.jelechem.2019.04.070
    [75]
    ZHOU L P, DAI S Q, XU S, et al. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants[J]. Applied Catalysis B: Environmental,2021,291:120019. doi: 10.1016/j.apcatb.2021.120019
    [76]
    YU J, WANG S, LOW J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics,2013,15(39):16883-16890. doi: 10.1039/c3cp53131g
    [77]
    JIAO D Y, CHEN F M, WANG S F, et al. Preparation and study of photocatalytic performance of a novel Z-scheme heterostructured SnS2/BaTiO3 composite[J]. Vacuum,2021,186:110052. doi: 10.1016/j.vacuum.2021.110052
    [78]
    YANG B, CHEN H B, YANG Y D, et al. Insights into the tribo-/pyro-catalysis using Sr-doped BaTiO3 ferroelectric nanocrystals for efficient water remediation[J]. Chemical Engineering Journal,2021,416:128986. doi: 10.1016/j.cej.2021.128986
    [79]
    ZHAO Q, XIAO H Y, FU G H, et al. Highly-efficient piezocatalytic performance of nanocrystalline BaTi0.89Sn0.11O3 catalyst with Tc near room temperature[J]. Nano Energy,2021,85:106028. doi: 10.1016/j.nanoen.2021.106028
    [80]
    郝亮, 张慧娜, 闫建成, 等. 氧空位缺陷对光催化活性的影响及其机制[J]. 天津科技大学报, 2018, 33(5):1-13, 72.

    HAO L, ZHANG H N, YAN J C, et al. Effect of oxygen vacancy defects on photocatalytic activity and its mechanism[J]. Journal of Tianjin University of Science & Technology,2018,33(5):1-13, 72(in Chinese).
    [81]
    WANG P L, LI X Y, FAN S Y, et al. Impact of oxygen vacancy occupancy on piezo-catalytic activity of BaTiO3 nanobelt[J]. Applied Catalysis B: Environmental,2020,279:119340. doi: 10.1016/j.apcatb.2020.119340
    [82]
    LIU X T, SHEN X F, SA B S, et al. Piezotronic-enhanced photocatalytic performance of heterostructured BaTiO3/SrTiO3 nanofibers[J]. Nano Energy,2021,89:106391. doi: 10.1016/j.nanoen.2021.106391
    [83]
    杨腾祥, 申国栋, 钱利江, 等. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(2):189-195.

    YANG T X, SHEN G D, QIAN L J, et al. Preparation of silver-barium titanate/polyester fabric and its photocatalytic properties[J]. Textile Journal,2022,43(2):189-195(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1572) PDF downloads(317) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return