Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
SONG Zezhuo, HAO Shefeng, MEI Hong, et al. Strength characteristics of biopolymer modified sand under dry-wet cycle[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2285-2295. doi: 10.13801/j.cnki.fhclxb.20220623.006
Citation: SONG Zezhuo, HAO Shefeng, MEI Hong, et al. Strength characteristics of biopolymer modified sand under dry-wet cycle[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2285-2295. doi: 10.13801/j.cnki.fhclxb.20220623.006

Strength characteristics of biopolymer modified sand under dry-wet cycle

doi: 10.13801/j.cnki.fhclxb.20220623.006
Funds:  Open Project of Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources (GTST2021-006); National Natural Science Foundation of China (41877212); Fundamental Research Funds for the Central Universities (B210203037)
  • Received Date: 2022-04-18
  • Accepted Date: 2022-06-13
  • Rev Recd Date: 2022-06-08
  • Available Online: 2022-06-24
  • Publish Date: 2023-04-15
  • The strength characteristics of biopolymer (XG)/sand composites were studied by unconfined compres-sive strength test and triaxial shear test. The effects of different XG contents (mass ratio to sand) and different dry-wet cycles on the strength characteristics of XG/sand were analyzed. The microstructure of different XG/sand was analyzed and studied by scanning electron microscope and low field NMR analyzer. The results show that with the increase of biopolymer content, the unconfined compressive strength, peak deviator stress and cohesion of XG/sand increase, and the internal friction angle varies in the range of 27°-32°. With the increase of the number of dry-wet cycles, the unconfined compressive strength, peak partial stress and cohesion of XG/sand decrease. The strength of XG/sand decreases about 29% after 4 dry-wet cycles. With the continuous increase of the number of dry-wet cycles, the decrease of strength is stable at about 20%. Biopolymers can form a large number of network structures on the surface and pores of sand. A large number of network structures are connected to each other as a network membrane, connecting the sand as a whole. The change of water in the environment will cause some damage to the reticular membrane, which reduces the mechanical properties of XG/sand. However, XG/sand still has strong structural and mechanical properties compared with the unmodified sand.

     

  • loading
  • [1]
    宋洋, 刘思源, 王晨炟. 含水率和干湿循环对原状黄土变形特性的影响[J]. 辽宁工程技术大学学报(自然科学版), 2021, 40(2):148-155.

    SONG Yang, LIU Siyuan, WANG Chenda. Analysis on influence of moisture content and drying and watering cycle on deformation characteristics of undisturbed loess[J]. Journal of Liaoning Technical University (Natural Science),2021,40(2):148-155(in Chinese).
    [2]
    GOH S, RAHARDJO H, LEONG E. Shear strength of unsaturated soils under multiple drying-wetting cycles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(2): 6013001.
    [3]
    李卓智, 张静波, 杨明. 江汉平原砂土回弹模量干湿循环折减系数研究[J]. 公路, 2020, 65(11):44-52.

    LI Zhuozhi, ZHANG Jingbo, YANG Ming. Study on dry-wet cycle reduction coefficient of sandy soil resilience modulus in Jianghan plain[J]. Highway,2020,65(11):44-52(in Chinese).
    [4]
    刘俊东, 唐朝生, 曾浩, 等. 干湿循环条件下黏性土干缩裂隙演化特征[J]. 岩土力学, 2021, 42(10):2763-2772.

    LIU Jundong, TANG Chaosheng, ZENG Hao, et al. Evolution of desiccation cracking behavior of clays under drying-wetting cycles[J]. Rock and Soil Mechanics,2021,42(10):2763-2772(in Chinese).
    [5]
    陈勇, 崔宪东, 赵强, 等. 干湿循环对边坡动力稳定性的影响及模拟[J]. 武汉大学学报(工学版), 2021, 54(9):795-800.

    CHEN Yong, CUI Xiandong, ZHAO Qiang, et al. Effect of cyclic drying-wetting on seismic stability of slope and its simulation[J]. Engineering Journal of Wuhan University,2021,54(9):795-800(in Chinese).
    [6]
    张鸿秋. 基于木质素磺酸钙改良膨胀土的干湿循环特性研究[D]. 郑州: 华北水利水电大学, 2021.

    ZHANG Hongqiu. Study on the dry-wet cycle characteristics of weak expansive soil based on Calcium Lignosulphonate[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021(in Chinese).
    [7]
    郭义. 香溪河岸坡粉砂岩干湿循环损伤机理试验研究[D]. 武汉: 中国地质大学, 2013.

    GUO Yi. Research on the damage mechanism of siltstone from Xiangxi river bank in drying and wetting cycle[D]. Wuhan: China University of Geosciences, 2013(in Chinese).
    [8]
    刘昭希. 干湿交替对荆江河岸土体力学特性及稳定性的影响研究[D]. 石河子: 石河子大学, 2020.

    LIU Zhaoxi. Influence of dry-wet alternation condition on mechanical properties and stability of riverbank soil in Jingjiang reach[D]. Shihezi: Shihezi University, 2020(in Chinese).
    [9]
    UDOMCHAI A, HOY M, HORPIBULSUK S, et al. Failure of riverbank protection structure and remedial approach: A case study in Suraburi province, Thailand[J]. Engineering Failure Analysis,2018,91:243-254. doi: 10.1016/j.engfailanal.2018.04.040
    [10]
    侯晓斌. 水利工程建设中的浆砌石护坡施工技术探讨[J]. 人民黄河, 2020, 42(S2):163-164.

    HOU Xiaobin. Discussion on construction technology of mortar masonry slope protection in water conservancy project construction[J]. Yellow River,2020,42(S2):163-164(in Chinese).
    [11]
    钟汉林. 随机分布纤维加固饱和砂土力学性能研究[D]. 烟台: 烟台大学, 2020.

    ZHONG Hanlin. Mechanical properties of saturated sand reinforced by randomly distributed fibers[D]. Yantai: Yantai University, 2020(in Chinese).
    [12]
    XIE W, GUO Q, CHOU N, et al. Shear strength behavior of sand reinforced by kraft paper using the ring shear apparatus[J]. Advances in Civil Engineering,2021,2021:8819015. doi: 10.1155/2021/8819015
    [13]
    CHEN Q, YU R, TAO G, et al. Shear behavior of polyurethane foam adhesive improved calcareous sand under large-scale triaxial test[J]. Marine Georesources & Geotechnology,2021,39(12):1449-1458.
    [14]
    王颖, 刘瑾, 白玉霞, 等. 高分子固化剂-玄武岩纤维/砂土复合材料强度特性[J]. 复合材料学报, 2019, 36(10):2407-2417.

    WANG Ying, LIU Jin, BAI Yuxia, et al. Strength characteristics of polymer curing agent-basalt fiber/sand composites[J]. Acta Materiae Compositae Sinica,2019,36(10):2407-2417(in Chinese).
    [15]
    谭毓清, 邵天彦, 王秀, 等. 砂改良土干湿循环下胀缩性研究[J]. 低温建筑技术, 2017, 39(5):111-112.

    TAN Yuqing, SHAO Tianyan, WANG Xiu, et al. Study on swelling shrinkage of sand improved soil under drying-wetting cycle[J]. Low Temperature Architecture Technology,2017,39(5):111-112(in Chinese).
    [16]
    WU L, MIAO L, SUN X, et al. Enzyme-induced carbonate precipitation combined with polyvinyl alcohol to solidify aeolian sand[J]. Journal of Materials in Civil Engineering,2021,33(12):04021373. doi: 10.1061/(ASCE)MT.1943-5533.0004009
    [17]
    LI Z, ZHAO Z, SHI H, et al. Experimental investigation of mechanical, permeability, and microstructural properties of PVA-improved sand under dry-wet cycling conditions[J]. Frontiers in Physics,2021,9:761754. doi: 10.3389/fphy.2021.761754
    [18]
    王天, 翁兴中, 张俊, 等. 干湿循环条件下复合固化砂土抗压强度试验研究[J]. 铁道科学与工程学报, 2017, 14(4):721-729.

    WANG Tian, WENG Xingzhong, ZHANG Jun, et al. Strength characteristics of fiber-reinforced solidified sand under dry-wet cycles[J]. Journal of Railway Science and Engineering,2017,14(4):721-729(in Chinese).
    [19]
    WANG X, ZHAN H, WANG J, et al. On the mechanical damage to tailings sands subjected to dry-wet cycles[J]. Bulletin of Engineering Geology & the Environment,2019,78(6):4647-4657.
    [20]
    倪静, 王子腾, 耿雪玉. 植物-生物聚合物联合法固土的试验研究[J]. 岩土工程学报, 2020, 42(11):2131-2137.

    NI Jing, WANG Ziteng, GENG Xueyu. Experimental study on combined plant-biopolymer method for soil stabilization[J]. Chinese Journal of Geotechnical Engineering,2020,42(11):2131-2137(in Chinese).
    [21]
    CHANG I, IM J, CHO G. Introduction of microbial biopolymers in soil treatment for future environmentally friendly and sustainable geotechnical engineering[J]. Sustainability,2016,8(3):251. doi: 10.3390/su8030251
    [22]
    中国国家标准化管理委员会. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国标准出版社, 2019.

    Standardization Administration of the People's Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Standards Press, 2019(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (713) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return