Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
CHEN Xudong, WU Chaoguo, CHEN Zhang, et al. Influence mechanism of curing temperature on the characteristics of dredged ultrafine mortar from Yangtze River[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2308-2320. doi: 10.13801/j.cnki.fhclxb.20220607.005
Citation: CHEN Xudong, WU Chaoguo, CHEN Zhang, et al. Influence mechanism of curing temperature on the characteristics of dredged ultrafine mortar from Yangtze River[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2308-2320. doi: 10.13801/j.cnki.fhclxb.20220607.005

Influence mechanism of curing temperature on the characteristics of dredged ultrafine mortar from Yangtze River

doi: 10.13801/j.cnki.fhclxb.20220607.005
Funds:  National Key R&D Program of China (2021 YFB2600200); National Natural Science Foundation of China (51979090); State Key Laboratory of High-Performance Civil Engineering Materials (2019 CEM002)
  • Received Date: 2022-04-02
  • Accepted Date: 2022-05-30
  • Rev Recd Date: 2022-05-10
  • Available Online: 2022-06-07
  • Publish Date: 2023-04-15
  • In order to realize the comprehensive utilization of dredged sand in the lower Yangtze River and expand the source of fine aggregate, the effects of different maintenance temperatures on different dredged sand admixtures mortar characteristics were investigated. Using dredged sand as raw material, three mortar mix ratios with different dredged sand admixtures were designed, and the effects of four curing temperatures of 40, 60, 80 and 90℃ on the compressive and flexural strengths at different ages were investigated, The microstructures of specimens with different curing temperatures and different dredged sand admixtures were analyzed by combining X-ray diffraction, thermogravimetric-differential scanning calorimetry, scanning electron microscopy and mercury injection test. The results show that with the increase of curing temperature, the distribution of hydration products in mortar is uneven, which hinder the subsequent hydration reaction. The compressive and flexural strengths of mortar increase first and then decrease. The higher the curing temperature is, the greater the steam curing damage is. The particle size of dredged sand is very small, and it has good filling effect. Appropriate incorporation of dredged sand can improve the compactness of the system, and reduce the number of harmful holes and multiple harmful holes, thereby improving the mechanical properties of mortar. Under the condition of steam curing, the pore structure defects of mortar increase, and the optimization effect of dredged sand is amplified, which can offset some adverse effects of steam curing to a certain extent. The enhancement rate of the dredged sand on the compressive strength gradually decreases with the increase of the curing temperature, and the maximum could enhance 31.35%. The enhancement of the flexural strength increases first and then decreases, and the maximum could enhance 14.29%.

     

  • loading
  • [1]
    李青云. 推进长江航道疏浚砂综合利用[N]. 中国水运报, 2020-04-01(001).

    LI Qingyun. Promote the comprehensive utilization of dredged sand in the Yangtze River waterway[N]. China Water Transport News, 2020-04-01(001)(in Chinese).
    [2]
    ZHANG G, SONG J, YANG J, et al. Performance of mortar and concrete made with a fine aggregate of desert sand[J]. Building and Environment,2006,41(11):1478-1481. doi: 10.1016/j.buildenv.2005.05.033
    [3]
    QIAO H, NDAHIRWA D, LI Y, et al. The feasibility of basalt rock powder and superfine sand as partial replacement materials for portland cement and artificial sand in cement mortar[J]. Research and Application of Materials Science,2019,1(1):1-6.
    [4]
    HASSOUNE M, CHRAIBI G, FATMAOUI H, et al. Stability of quay wall made on concrete blocks with a formulation based on dredging sand[J]. Materials Today: Proceedings,2021,36:47-53. doi: 10.1016/j.matpr.2020.05.163
    [5]
    HASSOUNE M, FATMAOUI H, CHAOUFI J. Use of concrete formulations based on dredging sand in the fabrication of tetrapods for protection of harbour dykes[J]. Materials Today: Proceedings,2022,52:60-63. doi: 10.1016/j.matpr.2021.10.281
    [6]
    李升涛, 陈徐东, 张伟, 等. 基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能[J]. 复合材料学报, 2022, 39(1):335-343.

    LI Shengtao, CHEN Xudong, ZHANG Wei, et al. Mechanical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze River[J]. Acta Materiae Compositae Sinica,2022,39(1):335-343(in Chinese).
    [7]
    ZHANG Q, LIU H, LIU Q, et al. Study the fire resistance of desert sand concrete (DSC) with interface phase through uniaxial compression tests and analyses[J]. Advances in Civil Engineering,2021,2021:8863136. doi: 10.1155/2021/8863136
    [8]
    LIU H, MA Y, MA J, et al. Frost resistance of desert sand concrete[J]. Advances in Civil Engineering,2021,2021:6620058. doi: 10.1155/2021/6620058
    [9]
    PENG X, ZHOU Y, JIA R, et al. Preparation of non-sintered lightweight aggregates from dredged sediments and modification of their properties[J]. Construction and Building Materials,2017,132:9-20. doi: 10.1016/j.conbuildmat.2016.11.088
    [10]
    刘霞, 李峰, 佘殷鹏. 玄武岩纤维增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10):2428-2438.

    LIU Xia, LI Feng, SHE Yinpeng. Axial compression test of basalt fiber reinforced polymer reinforced coral reef and sand aggregate concrete column[J]. Acta Materiae Compositae Sinica,2020,37(10):2428-2438(in Chinese).
    [11]
    秦拥军, 张亮亮, 渠长伟, 等. 钢纤维沙漠砂混凝土梁受弯力学性能试验[J]. 复合材料学报, 2021, 39(11):5599-5610.

    QIN Yongjun, ZHANG Liangliang, QU Changwei, et al. Testing of flexural mechanical properties of steel fiber desert sand concrete beams[J]. Acta Materiae Compositae Sinica,2021,39(11):5599-5610(in Chinese).
    [12]
    梅军帅, 吴静, 王罗新, 等. 珊瑚砂浆的力学性能与微观结构特征[J]. 建筑材料学报, 2020, 23(2):263-270.

    MEI Junshuai, WU Jing, WANG Luoxin, et al. Mechanical properties and microstructural characteristics of coral mortar[J]. Journal of Building Materials,2020,23(2):263-270(in Chinese).
    [13]
    HUANG X, LI G, PAN X, et al. Kinetic characteristics of lightweight aggregates obtained from dredged sediment[J]. Journal of Thermal Analysis and Calorimetry,2016,126(3):1201-1209. doi: 10.1007/s10973-016-5610-8
    [14]
    ZEYAD A M, JOHARI M A M, ALHARBI Y R, et al. Influence of steam curing regimes on the properties of ultrafine POFA-based high-strength green concrete[J]. Journal of Building Engineering,2021,38:102204. doi: 10.1016/j.jobe.2021.102204
    [15]
    MO Z, GAO X, SU A. Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions[J]. Construction and Building Materials,2021,268:121112. doi: 10.1016/j.conbuildmat.2020.121112
    [16]
    YANG J, HU H, HE X, et al. Effect of steam curing on compressive strength and microstructure of high volume ultrafine fly ash cement mortar[J]. Construction and Building Materials,2021,266:120894. doi: 10.1016/j.conbuildmat.2020.120894
    [17]
    黄安, 李北星, 杨建波, 等. 蒸养制度对预制桥面板混凝土强度与抗渗性的影响[J]. 硅酸盐通报, 2021, 40(4):1170-1177.

    HUANG An, LI Beixing, YANG Jianbo, et al. Effect of steam curing system on strength and impermeability of precast bridge deck concrete[J]. Bulletin of Silicate,2021,40(4):1170-1177(in Chinese).
    [18]
    QIAN X, JIANG L, SONG Z, et al. Impact of elevated curing temperature on mechanical properties and microstructure of MgO-based expansive additive cement mortars[J]. Structural Concrete,2020,21(3):1082-1092. doi: 10.1002/suco.201900127
    [19]
    DE LARRARD F. Concrete mixture proportioning: A scientific approach[M]. Florida: CRC Press Inc., 1999.
    [20]
    李玉根, 张慧梅, 刘光秀, 等. 风积砂混凝土基本力学性能及影响机理[J]. 建筑材料学报, 2020, 23(5):1212-1221. doi: 10.3969/j.issn.1007-9629.2020.05.030

    LI Yugen, ZHANG Huimei, LIU Guangxiu, et al. Basic mechanical properties and influence mechanism of aeolian sand concrete[J]. Journal of Building Materials,2020,23(5):1212-1221(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.05.030
    [21]
    桑国臣, 曹艳洲, 樊敏, 等. 硫铝酸盐水泥基复合相变储能砂浆的制备及其性能[J]. 复合材料学报, 2018, 35(8):2124-2131.

    SANG Guochen, CAO Yanzhou, FAN Min, et al. Preparation and properties of sulfoaluminate cement-based composite phase change energy storage mortar[J]. Acta Materiae Compositae Sinica,2018,35(8):2124-2131(in Chinese).
    [22]
    YANG S, WANG J, CUI S, et al. Impact of four kinds of alkanolamines on hydration of steel slag-blended cementitious materials[J]. Construction and Building Materials,2017,131:655-666. doi: 10.1016/j.conbuildmat.2016.09.060
    [23]
    朱红光, 霍青杰, 倪亚东, 等. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22):22085-22091. doi: 10.11896/cldb.20080019

    ZHU Hongguang, HUO Qingjie, NI Yadong, et al. Research on compressive strength and frost resistance of coal gangue fine aggregate-slag concrete[J]. Materials Reports,2021,35(22):22085-22091(in Chinese). doi: 10.11896/cldb.20080019
    [24]
    张高展, 葛竞成, 张春晓, 等. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15):15125-15133. doi: 10.11896/cldb.20060297

    ZHANG Gaozhan, GE Jingcheng, ZHANG Chunxiao, et al. Advances in the effect of curing system on the formation mechanism of concrete microstructure[J]. Materials Reports,2021,35(15):15125-15133(in Chinese). doi: 10.11896/cldb.20060297
    [25]
    黄时玉, 霍彬彬, 陈春, 等. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5):73-78.

    HUANG Shiyu, HUO Binbin, CHEN Chun, et al. The influence of metakaolin on the hydration of steam-cured steel slag blended cement[J]. Materials Reports,2022,36(5):73-78(in Chinese).
    [26]
    BAHAFID S, GHABEZLOO S, DUC M, et al. Effect of the hydration temperature on the microstructure of Class G cement: CSH composition and density[J]. Cement and Concrete Research,2017,95:270-281. doi: 10.1016/j.cemconres.2017.02.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(7)

    Article Metrics

    Article views (667) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return