Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LI Yugen, ZHANG Huimei, CHEN Shaojie, et al. Multi-scale degradation mechanism of aeolian sand concrete under salt-frost condition[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2331-2342. doi: 10.13801/j.cnki.fhclxb.20220607.004
Citation: LI Yugen, ZHANG Huimei, CHEN Shaojie, et al. Multi-scale degradation mechanism of aeolian sand concrete under salt-frost condition[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2331-2342. doi: 10.13801/j.cnki.fhclxb.20220607.004

Multi-scale degradation mechanism of aeolian sand concrete under salt-frost condition

doi: 10.13801/j.cnki.fhclxb.20220607.004
Funds:  National Natural Science Foundation of China (51868075); Yulin Science and Technology Bureau (2019-101-6); Yulin High-tech Zone Science and Technology Bureau (CXY-2021-10); Yulin University High Level Talent Research Start-up Fund (22GK11)
  • Received Date: 2022-03-30
  • Accepted Date: 2022-05-22
  • Rev Recd Date: 2022-05-04
  • Available Online: 2022-06-08
  • Publish Date: 2023-04-15
  • It is of great guiding significance to study the salt-frost degradation and reveal the degradation mechanism of aeolian sand concrete for its popularization and application. The salt-frost degradation rule of aeolian sand concrete was studied based on the fast indoor test and mechanical properties test, and its degradation mechanism was revealed from multi-scale combining with the SEM, XRD, NMR and damage mechanics theory. The results show that aeolian sand affects the frost resistance of concrete, and the optimal frost resistance is achieved with 100% aeolian sand replacement despite its low strength. The loss rates of mass and compressive strength increase with the increase number of salt-frost cycling, while the relative dynamic elastic modulus decreases with the increase number of salt-frost cycling. The salt-frost damage of aeolian sand concrete is dominated by physical-chemical effects, and the bone-slurry debonding in the interfacial transition zone (ITZ) and the cracking of the nearby mortar matrix are the main reasons for the degradation of its macroscopic physical and mechanical properties. Aeolian sand can change the pore structure of concrete and the moisture transmission path in it, thereby affects the pore saturation and the salt-frost resistance of concrete.

     

  • loading
  • [1]
    赵燕茹, 刘芳芳, 王磊, 等. 基于孔结构的单面冻后混凝土抗压强度模型研究[J]. 建筑材料学报, 2020, 23(6):1328-1336, 1344. doi: 10.3969/j.issn.1007-9629.2020.06.010

    ZHAO Yanru, LIU Fangfang, WANG Lei, et al. Modeling of compressive strength of concrete based on pore structure under single-side freeze-thaw condition[J]. Journal of Building Materials,2020,23(6):1328-1336, 1344(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.06.010
    [2]
    武海荣, 金伟良, 张锋剑, 等. 关注环境作用的混凝土冻融损伤特性研究进展[J]. 土木工程学报, 2018, 51(8):37-46.

    WU Hairong, JIN Weiliang, ZHANG Fengjian, et al. A state-of-the-art review on freeze-thaw damage characteristics of concrete under environmental actions[J]. China Civil Engineering Journal,2018,51(8):37-46(in Chinese).
    [3]
    匡亚川, 陈煜杰, 冯金仁, 等. 寒冷地区高速铁路桥梁冻融损伤研究[J]. 中国铁道科学, 2019, 40(2):39-45. doi: 10.3969/j.issn.1001-4632.2019.02.06

    KUANG Yachuan, CHEN Yujie, FENG Jinren, et al. Freezing-thawing damage of high speed railway bridges in cold region[J]. China Railway Science,2019,40(2):39-45(in Chinese). doi: 10.3969/j.issn.1001-4632.2019.02.06
    [4]
    SHANG H S, SONG Y P. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles[J]. Cement and Concrete Research,2006,36(10):1857-1864. doi: 10.1016/j.cemconres.2006.05.018
    [5]
    罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1):1-14, 43. doi: 10.6052/j.issn.1000-4750.2018.08.ST11

    LUO Daming, NIU Ditao, SU Li. Research progress on durability of stressed concrete under environmental actions[J]. Engineering Mechanics,2019,36(1):1-14, 43(in Chinese). doi: 10.6052/j.issn.1000-4750.2018.08.ST11
    [6]
    SICAT E, GONG F Y, UEDA T, et al. Experimental investigation of the deformational behavior of the interfacial transition zone (ITZ) in concrete during freezing and thawing cycles[J]. Construction and Building Materials,2014,65:122-131. doi: 10.1016/j.conbuildmat.2014.04.035
    [7]
    LI S G, CHEN G X, JI G J, et al. Quantitative damage evaluation of concrete suffered freezing-thawing by DIP technique[J]. Construction and Building Materials,2014,69:177-185. doi: 10.1016/j.conbuildmat.2014.07.072
    [8]
    ZHOU S B, LIANG J L, XUAN W A. The correlation between pore structure and macro durability performance of road concrete under loading and freeze-thaw and drying wetting cycles[J]. Advances in Materials Science and Engineering,2017,2017:5015169. doi: 10.1155/2017/5015169
    [9]
    ZHANG M H, ZHU X Z, SHI J Y, et al. Utilization of desert sand in the production of sustainable cement-based materials: A critical review[J]. Construction and Building Materials,2022,327:127014. doi: 10.1016/j.conbuildmat.2022.127014
    [10]
    MARIA G, ELIPE M, LOPEZ-QUEROL S. Aeolian sands: Characterization, options of improvement and possible employment in construction—The state of the art[J]. Construction and Building Materials,2014,73:728-739. doi: 10.1016/j.conbuildmat.2014.10.008
    [11]
    吴俊臣, 申向东. 风积沙混凝土的抗冻性与冻融损伤机理分析[J]. 农业工程学报, 2017, 33(10):184-190. doi: 10.11975/j.issn.1002-6819.2017.10.024

    WU Junchen, SHEN Xiangdong. Analysis on frost resistance and damage mechanism of aeolian sand concrete[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(10):184-190(in Chinese). doi: 10.11975/j.issn.1002-6819.2017.10.024
    [12]
    薛慧君, 申向东, 邹春霞, 等. 基于NMR的风积沙混凝土冻融孔隙演变研究[J]. 建筑材料学报, 2019, 22(2):199-205. doi: 10.3969/j.issn.1007-9629.2019.02.006

    XUE Huijun, SHEN Xiangdong, ZOU Chunxia, et al. Freeze-thaw pore evolution of aeolian sand concrete based on nuclear magnetic resonance[J]. Journal of Building Materials,2019,22(2):199-205(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.02.006
    [13]
    邹欲晓, 申向东, 李根峰, 等. MgSO4—冻融循环作用下风积沙混凝土的微观孔隙研究[J]. 建筑材料学报, 2018, 21(5):817-824. doi: 10.3969/j.issn.1007-9629.2018.05.019

    ZOU Yuxiao, SHEN Xiangdong, LI Genfeng, et al. Micropore of aeolian sand concrete under MgSO4—Freeze-thaw cycles[J]. Journal of Building Materials,2018,21(5):817-824(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.05.019
    [14]
    DONG W, SHEN X D, XUE H J, et al. Research on the freeze-thaw cycle test and damage model of aeolian sand lightweight aggregate concrete[J]. Construction and Building Materials,2016,123(1):792-799.
    [15]
    刘海峰, 马映昌, 张润奇, 等. 冻融环境下沙漠砂对混凝土轴心受压力学性能的影响[J]. 哈尔滨工业大学学报, 2021, 53(3): 101-109, 117.

    LIU Haifeng, MA Yingchang, ZHANG Runqi, et al. Influence of desert sand on axial compression behavior of concrete under freezing and thawing environment[J]. Journal of Harbin Institute of Technology, 2021, 53(3): 101-109, 117 (in Chinese).
    [16]
    LI Y G, ZHANG H M, CHEN S J, et al. Multi-scale study on the durability degradation mechanism of aeolian sand concrete under freeze-thaw conditions[J]. Construction and Building Materials,2022,340:127433. doi: 10.1016/j.conbuildmat.2022.127433
    [17]
    中国建筑科学研究院. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    China Academy of Building Research. Standard for test method of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [18]
    XIAO Q H, LI Q, CAO Z Y, et al. The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack[J]. Construction and Building Materials,2019,200:344-355. doi: 10.1016/j.conbuildmat.2018.12.066
    [19]
    HAO L, LIU Y, WANG W, et al. Effect of salty freeze-thaw cycles on durability of thermal insulation concrete with recycled aggregates[J]. Construction and Building Materials,2018,189:478-486. doi: 10.1016/j.conbuildmat.2018.09.033
    [20]
    牛荻涛, 张桂涛, 罗大明, 等. 极端冻融环境混凝土抗冻性能研究[J]. 工业建筑, 2019, 49(6):1-6.

    NIU Ditao, ZHANG Guitao, LUO Daming, et al. Research on frost resistance of reinforced concrete in extreme freezing-thawing environment[J]. Industrial Construction,2019,49(6):1-6(in Chinese).
    [21]
    SURYAVANSHI A K, SCANTLEBURY J D, LYON S B. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate[J]. Cement and Concrete Research,1996,26(5):717-727. doi: 10.1016/S0008-8846(96)85009-5
    [22]
    ZHAO G W, GUO M Z, CUI J F, et al. Partially-exposed cast-in-situ concrete degradation induced by internal-external sulfate and magnesium multiple coupled attack[J]. Construction and Building Materials,2021,294:123560. doi: 10.1016/j.conbuildmat.2021.123560
    [23]
    XIAO Q H, CAO Z Y, GUAN X, et al. Damage to recycled concrete with different aggregate substitution rates from the coupled action of freeze-thaw cycles and sulfate attack[J]. Construction and Building Materials,2019,221:74-83. doi: 10.1016/j.conbuildmat.2019.06.060
    [24]
    AL-HARTHY A S, HALIM M A, TAHA R, et al. The properties of concrete made with fine dune sand[J]. Construction and Building Materials,2007,21(8):1803-1808. doi: 10.1016/j.conbuildmat.2006.05.053
    [25]
    吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, 7(3):262-270.

    WU Zhongwei. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society,1979,7(3):262-270(in Chinese).
    [26]
    余红发, 孙伟, 金祖权, 等. 土木工程结构混凝土寿命预测的损伤演化方程[J]. 东南大学学报(自然科学版), 2006, 36(SII):216-220.

    YU Hongfa, SUN Wei, JIN Zuquan, et al. Damage evolution equation for service life prediction of concrete in key civil engineering[J]. Journal of Southeast University (Natural Science Edition),2006,36(SII):216-220(in Chinese).
    [27]
    张广泰, 耿天娇, 鲁海波, 等. 冻融循环下沙漠砂纤维混凝土损伤模型研究[J]. 硅酸盐通报, 2021, 47(7):2226-2231.

    ZHANG Guangtai, GENG Tianjiao, LU Haibo, et al. Damage model of desert sand fiber reinforced concrete under freeze-thaw cycles[J]. Bulletin of the Chinese Ceramic Society,2021,47(7):2226-2231(in Chinese).
    [28]
    JIANG Z, HE B, ZHU X, et al. State-of-the-art review on properties evolution and deterioration mechanism of concrete at cryogenic temperature[J]. Construction and Building Materials,2020,257:119456. doi: 10.1016/j.conbuildmat.2020.119456
    [29]
    VALENZA J J, SCHERER G W. Mechanism for salt scaling of a cementitious surface[J]. Materials and Structures,2007,40(3):259-268. doi: 10.1617/s11527-006-9104-1
    [30]
    LI Y G, ZHANG H M, LIU G X, et al. Multi-scale study on mechanical property and strength prediction of aeolian sand concrete[J]. Construction and Building Materials,2020,247:118538. doi: 10.1016/j.conbuildmat.2020.118538
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (1091) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return