Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
GAO Junguo, YAO Ziheng, LIU Yanli, et al. Influence of interphase dispersion state of nanoparticles on crystal morphology and dielectric properties in montmorillonite elastomer/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2085-2095. doi: 10.13801/j.cnki.fhclxb.20220606.001
Citation: GAO Junguo, YAO Ziheng, LIU Yanli, et al. Influence of interphase dispersion state of nanoparticles on crystal morphology and dielectric properties in montmorillonite elastomer/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2085-2095. doi: 10.13801/j.cnki.fhclxb.20220606.001

Influence of interphase dispersion state of nanoparticles on crystal morphology and dielectric properties in montmorillonite elastomer/polypropylene composites

doi: 10.13801/j.cnki.fhclxb.20220606.001
Funds:  National Natural Science Foundation of China (51577045); Heilongjiang Postdoctoral Grant (LBH-Q19106)
  • Received Date: 2022-04-08
  • Accepted Date: 2022-05-20
  • Rev Recd Date: 2022-05-11
  • Available Online: 2022-06-07
  • Publish Date: 2023-04-15
  • With the increasing demand for cable, environmental protection and energy-saving insulation has become a new development trend, and the research and development of polypropylene (PP) has become the first choice of dielectric researchers. In order to improve dielectric properties of polypropylene-elastomer blends, MMT-POE/PP nano-modified blends were prepared by two-step melting blending method with two different compatibilizers and organically treated montmorillonite (MMT). And then the effects of interphase dispersion states of nanoparticles in different phase zones on dielectric properties of nano-modified blends were investigated. The microstructure, crystalline morphology and crystallization parameters were characterized by SEM, electrostatic force microscopy (EFM), polarizing microscope (PLM) and DSC. The micro-mechanism of phase dispersion on MMT-POE/PP composites was discussed through the breakdown properties test of the blend sample. The experimental results show that when MMT layers tend to disperse in the PP phase, the crystallization size decreases about 5.9 μm, the crystallization speed increases, and the crystallinity increases about 2.1%. And then the dielectric constant and insulation conductivity decrease obviously, and the alternating current (AC) breakdown field strength increases from 82.69 kV/mm to 95.16 kV/mm. The dielectric properties of nano-modified blends can be positively improved by regulating the tendency of nanoparticles to disperse uniformly in the PP phase.

     

  • loading
  • [1]
    杜伯学, 李忠磊, 周硕凡, 等. 聚丙烯高压直流电缆绝缘研究进展与展望[J]. 电气工程学报, 2021, 16(2):2-11.

    DU Boxue, LI Zhonglei, ZHOU Shuofan, et al. Research progress and perspective of polypropylene-based insulation for HVDC cables[J]. High Voltage Technology,2021,16(2):2-11(in Chinese).
    [2]
    SOROLLA-ROSARIO D, LIORCA-PORCEL J, PEREZ-MARTINEZ M, et al. Study of microplastics with semicrystalline and amorphous structure identification by TGA and DSC[J]. Journal of Environmental Chemical Engineering,2022,10(1):106886. doi: 10.1016/j.jece.2021.106886
    [3]
    赵洪, 袁鑫, 杨佳明, 等. 弹性体/聚丙烯与塑性体/聚丙烯复合材料的力学及介电性能[J]. 高分子材料科学与工程, 2020, 36(10):44-50.

    ZHAO Hong, YUAN Xin, YANG Jiaming, et al. Mechanical and dielectric properties of elastomer/polypropylene and plastomer/polypropylene composites[J]. Polymer Materials Science & Engineering,2020,36(10):44-50(in Chinese).
    [4]
    OUYANG Y, POURRAHIMI A M, LUND A, et al. High-temperature creep resistant ternary blends based on polyethylene and polypropylene for thermoplastic power cable insulation[J]. Journal of Polymer Science,2021,59(11):1084-1094. doi: 10.1002/pol.20210147
    [5]
    LI L, CHEN M, ZHU X, et al. Space charge and DC breakdown strength of propylene-ethylene copolymer/polypropylene composite[C]//2021 International Conference on Electrical Materials and Power Equipment (ICEMPE). Chongqing: IEEE, 2021: 1-4.
    [6]
    SHIRVANIMOGHADDAM K, BALAJI K V, YADAV R, et al. Balancing the toughness and strength in polypropylene composites[J]. Composites Part B: Engineering,2021,223:109121. doi: 10.1016/j.compositesb.2021.109121
    [7]
    WANG K, CHEN L, GAO Y, et al. Effect of morphology development on the low-temperature tensile properties of PP/POE blends[J]. Journal of Applied Polymer Science,2022,139(21):52192. doi: 10.1002/app.52192
    [8]
    MATHABANI A, RYTLUOTO I, HE X, et al. Solution modified fumed silica and its effect on charge trapping behavior of PP/POE/silica nanodielectrics[J]. Proceedings of the Nordic Insulation Symposium,2019(26):129-133. doi: 10.5324/nordis.v0i26.3292
    [9]
    HE X, RYTOLUOTO I, ANYSZKA R, et al. Silica surface-modification for tailoring the charge trapping properties of PP/POE based dielectric nanocomposites for HVDC cable application[J]. IEEE Access,2020,8:87719-87734.
    [10]
    HE X, SERI P, RYTOLUOTO I, et al. Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocomposites[C]//2020 IEEE 3rd International Conference on Dielectrics (ICD). Valencia, Spain: IEEE, 2020.
    [11]
    WEI M, WANG X, ANDRITSCH T. Space charge and breakdown strength behaviour of PP/POE/MgO nanocomposites[C]//2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE). Guangzhou, China: IEEE, 2019.
    [12]
    DANG B, ZHOU Y, HE J, et al. Relationship between space charge behaviors and trap level distribution in polypropylene/propylene ethylene rubber/ZnO nanocomposites[C]//2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). Toronto, ON, Canada: IEEE, 2016: 595-598.
    [13]
    LI Z, CAO W, SHENG G, et al. Experimental study on space charge and electrical strength of MgO nano-particles/polypropylene composite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2016,23(3):1812-1819. doi: 10.1109/TDEI.2016.005181
    [14]
    ADNAN M, ABDUL-MALEK Z, LAU K Y, et al. Effect of titanium oxide nanofiller on the electrical properties of polypropylene nanocomposites for HVDC insulation[C]//2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM). Johor Bahru, Malaysia: IEEE, 2021: 222-225.
    [15]
    GAO M, YANG J, ZHAO H, et al. Preparation methods of polypropylene/nano-silica/styrene-ethylene-butylene-styrene composite and its effect on electrical properties[J]. Polymers,2019,11(5):797. doi: 10.3390/polym11050797
    [16]
    ZHA J W, WANG J F, WANG S J, et al. Effect of modified ZnO on electrical properties of PP/SEBS nanocomposites for HVDC cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2018,25(6):2358-2365. doi: 10.1109/TDEI.2018.007176
    [17]
    高俊国. 聚乙烯/纳米蒙脱土复合物的空间电荷特性与介电性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2013.

    GAO Junguo. Space charge characteristics and dielectric properties of polyethylene/nanomontmorillonite composites[D]. Harbin: Harbin University of Science and Technology, 2013(in Chinese).
    [18]
    LI B, SALCEDO-GALAN F, XIDAS P I, et al. Improving electrical breakdown strength of polymer nanocomposites by tailoring hybrid-filler structure for high-voltage dielectric applications[J]. ACS Applied Nano Materials,2018,1(9):4401-4407. doi: 10.1021/acsanm.8b01127
    [19]
    HU J, ZHAO X, XIE J, et al. Influence of organic Na+-MMT on the dielectric and energy storage properties of maleic anhydride-functionalized polypropylene nanocomposites[J]. Journal of Polymer Research,2022,29(5):1-9.
    [20]
    PENG P, YANG Z, WU M, et al. Effect of montmorillonoite modification and maleic anhydride-grafted polypropylene on the microstructure and mechanical properties of polypropylene/montmorillonoite nanocomposites[J]. Journal of Applied Polymer Science,2013,130(6):3952-3960.
    [21]
    SHARMA A, BASU S, GUPTA N. Detection of charge around a nanoparticle in a nanocomposite using electrostatic force microscopy[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2020,27(3):866-872. doi: 10.1109/TDEI.2020.008791
    [22]
    LUNA C B B, SIQUEIRA D D, ARAUJO E M, et al. Evaluation of the SEBS copolymer in the compatibility of PP/ABS blends through mechanical, thermal, thermomechanical properties, and morphology[J]. Polymers for Advanced Technologies,2022,33(1):111-124. doi: 10.1002/pat.5495
    [23]
    迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32(1):76-84.

    CHI Xiaohong, YU Li, ZHENG Jie, et al. Crystallization morphology and electrical tree resistance characteristics of montmorillonite/polypropylene compsites[J]. Acta Materiae Compositae Sinica,2015,32(1):76-84(in Chinese).
    [24]
    JIANG H, ZHANG X, GAO J, et al. Dielectric and AC breakdown properties of SiO2/MMT/LDPE micro-nano composites[J]. Energies,2021,14(5):1235. doi: 10.3390/en14051235
    [25]
    ZHANG X, SHI Z, MA L, et al. Enhanced breakdown strength and electrical tree resistance properties of MMT/SiO2/LDPE multielement composites[J]. Journal of Applied Polymer Science,2019,136(17):47364. doi: 10.1002/app.47364
    [26]
    韩永森, 孙健, 张昕, 等. 微纳米SiC/环氧树脂复合材料的界面和非线性电导特性[J]. 复合材料学报, 2020, 37(7):1562-1570.

    HAN Yongsen, SUN Jian, ZHANG Xin, et al. Interface and nonlinear conduction characteristics of micro-nano SiC/epoxy composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1562-1570(in Chinese).
    [27]
    徐曼, 冯军强, 曹晓珑. 纳米银-环氧树脂复合电介质的介电特性[J]. 中国电机工程学报, 2009, 29(4):117-122. doi: 10.3321/j.issn:0258-8013.2009.04.019

    XU Man, FENG Junqiang, CAO Xiaolong. Dielectric properties of silver/epoxy composite dielectric[J]. Proceedings of the CSEE,2009,29(4):117-122(in Chinese). doi: 10.3321/j.issn:0258-8013.2009.04.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (612) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return