Citation: | REN Jiaoyu, WANG Hong. Injectable nanomotors-hydrogel system with high cellular uptake for targeted cancer gene therapy[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1655-1662. doi: 10.13801/j.cnki.fhclxb.20220524.001 |
[1] |
FAN H, DEMIRCI U, CHEN P. Emerging organoid models: Leaping forward in cancer research[J]. Journal of Hematology & Oncology,2019,12(1):142.
|
[2] |
SIHOE A D L. Video-assistedthoracoscopic surgery as the gold standard for lung cancer surgery[J]. Respirology,2020,25:49-60.
|
[3] |
WANG W, HAO Y, LIU Y, et al. Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology,2020,13(1):e1654.
|
[4] |
HAO M, CHEN B, ZHAO X, et al. Organic/inorganic nanocomposites for cancer immunotherapy[J]. Materials Chemistry Frontiers,2020,4(9):2571-2609. doi: 10.1039/D0QM00323A
|
[5] |
SHI S, VISSAPRAGADA R, JAOUDE J A, et al. Evolving role of biomaterials in diagnostic and therapeutic radiation oncology[J]. Bioactive Materials,2020,5(2):233-240. doi: 10.1016/j.bioactmat.2020.01.011
|
[6] |
LEVITZKI A, KLEIN S. My journey from tyrosine phosphorylation inhibitors to targeted immune therapy as strategies to combat cancer[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(24):11579-11586. doi: 10.1073/pnas.1816012116
|
[7] |
LEI Z, DING L, YAO C, et al. A Highly efficient tumor-targeting nanoprobe with a novel cell membrane permeability mechanism[J]. Advanced Materials,2019,31(12):1807456. doi: 10.1002/adma.201807456
|
[8] |
LEDFORD H. Gene therapy’s toughest test[J]. Nature,2019,576(7785):22-25. doi: 10.1038/d41586-019-03698-8
|
[9] |
MA C C, WANG Z L, XU T, et al. The approved gene therapy drugs worldwide: From 1998 to 2019[J]. Biotechnology Advances,2020,40:107502. doi: 10.1016/j.biotechadv.2019.107502
|
[10] |
WAYNE E C, LONG C, HANEY M J, et al. Targeted delivery of siRNA lipoplexes to cancer cells using macrophage transient horizontal gene transfer[J]. Advanced Science,2019,6(21):1900582.
|
[11] |
ZHANG M J, WENG Y H, CAO Z Y, et al. ROS-activatable sirna-engineered polyplex for NIR-triggered synergistic cancer treatment[J]. ACS Applied Materials & Interfaces,2020,12(29):32289-32300.
|
[12] |
MI Y, HAGAN C T, VINCENT B G, et al. Emerging nano-/microapproaches for cancer immunotherapy[J]. Advanced Science,2019,6(6):1801874.
|
[13] |
WANG Z H, MA Y, WANG H, et al. CXCR4-enriched nano-trap targeting CXCL12 in lung for early prevention and enhanced photodynamic therapy of breast cancer metastasis[J]. Advanced Functional Materials,2019,29(45):1905480.
|
[14] |
WANG H, PUMERA M. Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment[J]. Chemical Society Reviews,2020,49(10):3211-3230. doi: 10.1039/C9CS00877B
|
[15] |
WANG H, PUMERA M. Micro/nanomachines and living biosystems: From simple interactions to microcyborgs[J]. Advanced Functional Materials,2018,28(25):1705421. doi: 10.1002/adfm.201705421
|
[16] |
MOU F Z, LI X F, XIE Q, et al. Active micromotor systems built from passive particles with biomimetic predator-prey interactions[J]. ACS Nano,2020,14(1):406-414. doi: 10.1021/acsnano.9b05996
|
[17] |
ZHOU M, XING Y, LI X, et al. Cancer cell membrane camouflaged semi-yolk@spiky-shell nanomotor for enhanced cell adhesion and synergistic therapy[J]. Small,2020,16(39):2003834. doi: 10.1002/smll.202003834
|
[18] |
WAN M, WANG Q, LI X, et al. Systematic research and evaluation models of nanomotors for cancer combined therapy[J]. Angewandte Chemie-International Edition,2020,59(34):14458-14465. doi: 10.1002/anie.202002452
|
[19] |
VENUGOPALAN P L, DE AVILA B E F, PAL M, et al. Fantastic voyage of nanomotors into the cell[J]. ACS Nano,2020,14(8):9423-9439. doi: 10.1021/acsnano.0c05217
|
[20] |
WU Y J, SI T Y, SHAO J X, et al. Near-infrared light-driven Janus capsule motors: Fabrication, propulsion, and simulation[J]. Nano Research,2016,9(12):3747-3756. doi: 10.1007/s12274-016-1245-0
|
[21] |
ROY S, ZHU D, PARAK W J, et al. Lysosomal proton buffering of poly(ethylenimine) measured in situ by fluorescent pH-sensor microcapsules[J]. ACS Nano,2020,14(7):8012-8023. doi: 10.1021/acsnano.9b10219
|
[22] |
SALIM L, ISLAM G, DESAULNIERS J P. Targeted delivery and enhanced gene-silencing activity of centrally modified folic acid-siRNA conjugates[J]. Nucleic Acids Research,2020,48(1):75-85. doi: 10.1093/nar/gkz1115
|
[23] |
HORMIGOS R M, SANCHEZ B J, ESCARPA A. Multi-light-responsive quantum dot sensitized hybrid micromotors with dual-mode propulsion[J]. Angewandte Chemie-International Edition,2019,58(10):3128-3132. doi: 10.1002/anie.201811050
|
[24] |
ZENG M X, YUAN S, HUANG D L, et al. Accelerated design of catalytic water-cleaning nanomotors via machine learning[J]. ACS Applied Materials& Interfaces,2019,11(43):40099-40106.
|
[25] |
HOWSE J R, JONES R A L, RYAN A J, et al. Self-motile colloidal particles: From directed propulsion to random walk[J]. Physical Review Letters,2007,99(4):048102. doi: 10.1103/PhysRevLett.99.048102
|
[26] |
DUNDERDALE G, EBBENS S, FAIRCLOUGH P, et al. Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes[J]. Langmuir,2012,28(30):10997-11006. doi: 10.1021/la301370y
|
[27] |
REN J Y, XUAN H Y, DAI W, et al. Double network self-healing film based on metal chelation and Schiff-base interaction and its biological activities[J]. Applied Surface Science,2018,448:609-617. doi: 10.1016/j.apsusc.2018.04.122
|
[28] |
REN J Y, XUAN H Y, GE L Q. Double network self-healing chitosan/dialdehyde starch-polyvinyl alcohol film for gas separation[J]. Applied Surface Science,2019,469:213-219. doi: 10.1016/j.apsusc.2018.11.001
|
[29] |
ARAGHI S O, KIEFTE-DE J J C, VAN DIJK S C, et al. Folic acid and vitamin B12 supplementation and the risk of cancer: Long-term follow-up of the B vitamins for the prevention of osteoporotic fractures (B-PROOF) trial[J]. Cancer Epidemiology Biomarkers Prevention,2019,28(2):275-282. doi: 10.1158/1055-9965.EPI-17-1198
|
[30] |
AKBAL O, BOLAT G, YAMAN Y T, et al. Folic acid conjugated Prussian blue nanoparticles: Synthesis, physicochemical characterization and targeted cancer cell sensing[J]. Colloids and Surfaces B: Biointerfaces,2020,187:110655. doi: 10.1016/j.colsurfb.2019.110655
|
[31] |
CAO Q, YANG J, ZHANG H, et al. Traceable in-cell synthesis and cytoplasm-to-nucleus translocation of a zinc Schiff base complex as a simple and economical anticancer strategy[J]. Chemical Communication,2019,55(54):7852-7855. doi: 10.1039/C9CC03480C
|
[32] |
PARVEEN S. Recent advances in anticancer ruthenium Schiff base complexes[J]. Applied Organometallic Che-mistry,2020,34(8):e5687.
|