Citation: | ZHANG Hansong, GONG Yu, LIN Wenjuan, et al. Effect of ply angle on mode II delamination propagation behavior of CFRP multidirectional laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4498-4508. DOI: 10.13801/j.cnki.fhclxb.20220329.001 |
[1] |
杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DOI: 10.3321/j.issn:1000-3851.2008.01.001
DU Shanyi, GUAN Zhidong. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica,2008,25(1):1-10(in Chinese). DOI: 10.3321/j.issn:1000-3851.2008.01.001
|
[2] |
杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DOI: 10.3321/j.issn:1000-3851.2007.01.001
DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). DOI: 10.3321/j.issn:1000-3851.2007.01.001
|
[3] |
TEIMOURI F, HEIDARI-RARANI M, HAJI ABOUTALEBI F. Finite element modeling of mode I fatigue delamination growth in composites under large-scale fiber bridging[J]. Composite Structures,2021,263:113716.
|
[4] |
BIN MOHAMED REHAN M S, ROUSSEAU J, FONTAINE S, et al. Experimental study of the influence of ply orientation on DCB mode-I delamination behavior by using multidirectional fully isotropic carbon/epoxy laminates[J]. Composite Structures, 2017, 161(Supplement C): 1-7.
|
[5] |
赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 39(1):1-28.
ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica,2019,39(1):1-28(in Chinese).
|
[6] |
李玉龙, 刘会芳. 加载速率对层间断裂韧性的影响[J]. 航空学报, 2015, 36(8):2620-2650.
LI Y L, LIU H F. Loading rate effect on interlaminar fracture toughness[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8):2620-2650(in Chinese).
|
[7] |
HYUNG Y C, CHANG F. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials,1992,26(14):2134-2169. DOI: 10.1177/002199839202601408
|
[8] |
郭壮壮, 徐武, 余音. 低温环境下测试复合材料I型层间断裂韧性的简易方法[J]. 复合材料学报, 2019, 36(5):1210-1215.
GUO Z Z, XU W, YU Y. A simple method for determining the mode I interlaminar fracture toughness of composite at low temperature[J]. Acta Materiae Compositae Sinica,2019,36(5):1210-1215(in Chinese).
|
[9] |
GARULLI T, CATAPANO A, FANTERIA D, et al. Experimental assessment of fully-uncoupled multi-directional specimens for mode I delamination tests[J]. Composites Science and Technology,2020,200:108421. DOI: 10.1016/j.compscitech.2020.108421
|
[10] |
LAKSIMI A, AHMED BENYAHIA A, BENZEGGAGH M L, et al. Initiation and bifurcation mechanisms of cracks in multi-directional laminates[J]. Composites Science and Technology,2000,60(4):597-604. DOI: 10.1016/S0266-3538(99)00179-7
|
[11] |
DAVIDSON B D, KRUGER R, KOING M. Effect of stacking sequence on energy release rate distributions in multidirectional DCB and ENF specimens[J]. Engineering Fracture Mechanics,1996,55(4):557-569. DOI: 10.1016/S0013-7944(96)00037-9
|
[12] |
OZDIL F, CARLSSON L A, DAVIES P. Beam analysis of angle-ply laminate end-notched flexure specimens[J]. Composites Science and Technology,1998,58(12):1929-1938. DOI: 10.1016/S0266-3538(98)00018-9
|
[13] |
PEREIRA A B, DE MORAIS A B, MARQUES A T, et al. Mode II interlaminar fracture of carbon/epoxy multidirectional laminates[J]. Composites Science and Technology,2004,64(10):1653-1659.
|
[14] |
PEREIRA A B, DE MORAIS A B. Mode II interlaminar fracture of glass/epoxy multidirectional laminates[J]. Composites Part A: Applied Science and Manufacturing,2004,35(2):265-272. DOI: 10.1016/j.compositesa.2003.09.028
|
[15] |
CHAI H. Interlaminar shear fracture of laminated composites[J]. International Journal of Fracture,1990,43(2):117-131. DOI: 10.1007/BF00036181
|
[16] |
HERRÁEZ M, PICHLER N, PAPPAS G A, et al. Experiments and numerical modelling on angle-ply laminates under remote mode II loading[J]. Composites Part A: Applied Science and Manufacturing,2020,134:105886. DOI: 10.1016/j.compositesa.2020.105886
|
[17] |
POLAHA J J, DAVIDSON B D, HUDSON R C, et al. Effects of mode ratio, ply orientation and precracking on the delamination toughness of a laminated composite[J]. Journal of Reinforced Plastics and Composites,1996,15(2):141-173. DOI: 10.1177/073168449601500202
|
[18] |
SALAMAT-TALAB M, SHOKRIEH M M, MOHAGHEGH M. On the R-curve and cohesive law of glass/epoxy end-notch flexure specimens with 0//θ interface fiber angles[J]. Polymer Testing,2020,93:106992.
|
[19] |
CHOI N S, KINLOCH A J, WILLIAMS J G. Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II and mixed-mode I/II loading[J]. Journal of Composite Materials,1999,33(1):73-100. DOI: 10.1177/002199839903300105
|
[20] |
TAO J, SUN C T. Influence of ply orientation on delamination in composite laminates[J]. Journal of Composite Materials,1998,32(21):1933-1947. DOI: 10.1177/002199839803202103
|
[21] |
HWANG J H, KWON O, LEE C S, et al. Interlaminar fracture and low-velocity impact of carbon/epoxy composite materials[J]. Mechanics of Composite Materials,2000,36(2):117-130. DOI: 10.1007/BF02681828
|
[22] |
中国航空工业总公司. 碳纤维复合材料层合板II型层间断裂韧性GIIC试验方法: HB 7403—1996[S]. 北京: 中国标准出版社, 1996
China Aviation Industry Corporation. Test method for mode II interlaminar fracture toughness GIIC of carbon fiber composite laminates: HB 7403—1996[S]. Beijing: China Standards Press, 1996(in Chinese).
|
[23] |
李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法现状[J]. 复合材料学报, 2021, 38(4):1076-1086.
LI Xining, WANG Yueshun, ZHOU Xinfang. Status of numerical simulation methods for delamination damage of composite laminates[J]. Acta Materiae Compositae Sinica,2021,38(4):1076-1086(in Chinese).
|
[24] |
ZHAO L, GONG Y, ZHANG J, et al. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements[J]. Composite Structures,2014,116:509-522. DOI: 10.1016/j.compstruct.2014.05.042
|
[25] |
CAMANHO P P, DÁVILA C G, PINHO S T, et al. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear[J]. Composites Part A: Applied Science and Manufacturing,2006,37(2):165-176. DOI: 10.1016/j.compositesa.2005.04.023
|
1. |
徐建蓉,梅启林,姜端洋,蔡永祺,刘备,丁国民. Ca~(2+)辅助增强CNT/PEEK界面结合及其导电复合材料制备与性能. 复合材料学报. 2025(01): 283-298 .
![]() | |
2. |
赵宏婷,王鹤峰,罗居杰,贾宜委,何艳骄,树学峰. N, S共掺杂碳/PVDF纳米复合膜的电磁屏蔽效能及其力学性能. 复合材料学报. 2025(02): 845-853 .
![]() | |
3. |
朱再斌,凌辉,杨小平,李刚,王超. 碳纳米管膜层间增强增刚碳纤维增强树脂基复合材料的压缩强度与导热性能. 复合材料学报. 2024(03): 1235-1248 .
![]() | |
4. |
施水娟,卞达,李佳红,王恺璇,徐鹏程,赵鹏,赵永武,陈义. 不同注射温度和热处理对聚醚醚酮/碳纤维复合材料摩擦磨损性能的影响. 塑料科技. 2024(04): 23-27 .
![]() | |
5. |
周杰,何相明,耿闻,李闯,李伟. 碳纳米管改性热固性树脂的研究进展. 广州化工. 2024(14): 11-13 .
![]() | |
6. |
王文波,宋彦平,李年,王振洋. 激光诱导石墨烯的纳米银颗粒原位修饰及其导电性能调控. 复合材料学报. 2024(08): 4124-4133 .
![]() | |
7. |
李纪康,刘雁雁,王维超,郑振荣. 纳米材料在防护纺织品中的应用研究. 天津纺织科技. 2023(03): 1-5 .
![]() | |
8. |
李亚洲 ,杨强 ,彭瑞龙 ,王富 ,李涤尘 . 聚醚醚酮及其复合材料激光粉末床熔融成形的研究现状与展望. 精密成形工程. 2023(11): 46-60 .
![]() | |
9. |
任天翔,滕晓波,黄兴,马金星,赵德方,占海华. 聚醚醚酮的改性及应用研究进展. 塑料科技. 2022(09): 123-128 .
![]() | |
10. |
杨琴,汪莹,刘逸众. 热塑性树脂聚醚醚酮(PEEK)改性研究进展. 长沙航空职业技术学院学报. 2022(04): 33-37 .
![]() |