ZHANG Hansong, GONG Yu, LIN Wenjuan, et al. Effect of ply angle on mode II delamination propagation behavior of CFRP multidirectional laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4498-4508. DOI: 10.13801/j.cnki.fhclxb.20220329.001
Citation: ZHANG Hansong, GONG Yu, LIN Wenjuan, et al. Effect of ply angle on mode II delamination propagation behavior of CFRP multidirectional laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4498-4508. DOI: 10.13801/j.cnki.fhclxb.20220329.001

Effect of ply angle on mode II delamination propagation behavior of CFRP multidirectional laminates

More Information
  • Received Date: January 24, 2022
  • Revised Date: March 08, 2022
  • Accepted Date: March 17, 2022
  • Available Online: March 30, 2022
  • Carbon fiber reinforced polymer (CFRP) is gradually used in aircraft main load-bearing structure due to its good mechanical properties. Delamination is one of the most common damage forms of composite laminates, and it is also the focus of damage tolerance design and analysis of aircraft composite structures. For mode II delamination, the existing research mainly focuses on unidirectional laminates, while multidirectional laminates are widely used in engineering practice, and there is a lack of in-depth understanding of the influence of ply angle on mode II delamination. Therefore, experimental and numerical investigations were conducted in this paper. Firstly, three different interfaces (0°/5°, 45°/−45° and 90°/90°) were designed for composite laminates made of T700/QY9511 carbon fiber/bismaleimide prepregs, in order to reduce the coupling effect and ensure the mode II dominant delamination propagation. The mode II delamination test was carried out using end-notched flexure device and the fracture toughness was measured. The results show that the ply angle has a significant effect on the fracture toughness and delamination failure behavior. The control variable method is used for establishing the key parameter model of cohesive zone model. On this basis, the simulation of mode II delamination propagation behavior of multidirectional laminates is realized. The predicted load-displacement curve response is in good agreement with the experimental results, which shows the effectiveness of the finite element model. The finite element results show that the energy dissipated by the matrix damage increases with the increase of interfacial angle. In order to reveal the relationship between the energy dissipated by matrix damage and the size of damage area around the crack tip, the damage area around the crack tip of specimens with different interfaces was simulated by using user-defined subroutine.
  • [1]
    杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DOI: 10.3321/j.issn:1000-3851.2008.01.001

    DU Shanyi, GUAN Zhidong. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica,2008,25(1):1-10(in Chinese). DOI: 10.3321/j.issn:1000-3851.2008.01.001
    [2]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DOI: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). DOI: 10.3321/j.issn:1000-3851.2007.01.001
    [3]
    TEIMOURI F, HEIDARI-RARANI M, HAJI ABOUTALEBI F. Finite element modeling of mode I fatigue delamination growth in composites under large-scale fiber bridging[J]. Composite Structures,2021,263:113716.
    [4]
    BIN MOHAMED REHAN M S, ROUSSEAU J, FONTAINE S, et al. Experimental study of the influence of ply orientation on DCB mode-I delamination behavior by using multidirectional fully isotropic carbon/epoxy laminates[J]. Composite Structures, 2017, 161(Supplement C): 1-7.
    [5]
    赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 39(1):1-28.

    ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica,2019,39(1):1-28(in Chinese).
    [6]
    李玉龙, 刘会芳. 加载速率对层间断裂韧性的影响[J]. 航空学报, 2015, 36(8):2620-2650.

    LI Y L, LIU H F. Loading rate effect on interlaminar fracture toughness[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8):2620-2650(in Chinese).
    [7]
    HYUNG Y C, CHANG F. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials,1992,26(14):2134-2169. DOI: 10.1177/002199839202601408
    [8]
    郭壮壮, 徐武, 余音. 低温环境下测试复合材料I型层间断裂韧性的简易方法[J]. 复合材料学报, 2019, 36(5):1210-1215.

    GUO Z Z, XU W, YU Y. A simple method for determining the mode I interlaminar fracture toughness of composite at low temperature[J]. Acta Materiae Compositae Sinica,2019,36(5):1210-1215(in Chinese).
    [9]
    GARULLI T, CATAPANO A, FANTERIA D, et al. Experimental assessment of fully-uncoupled multi-directional specimens for mode I delamination tests[J]. Composites Science and Technology,2020,200:108421. DOI: 10.1016/j.compscitech.2020.108421
    [10]
    LAKSIMI A, AHMED BENYAHIA A, BENZEGGAGH M L, et al. Initiation and bifurcation mechanisms of cracks in multi-directional laminates[J]. Composites Science and Technology,2000,60(4):597-604. DOI: 10.1016/S0266-3538(99)00179-7
    [11]
    DAVIDSON B D, KRUGER R, KOING M. Effect of stacking sequence on energy release rate distributions in multidirectional DCB and ENF specimens[J]. Engineering Fracture Mechanics,1996,55(4):557-569. DOI: 10.1016/S0013-7944(96)00037-9
    [12]
    OZDIL F, CARLSSON L A, DAVIES P. Beam analysis of angle-ply laminate end-notched flexure specimens[J]. Composites Science and Technology,1998,58(12):1929-1938. DOI: 10.1016/S0266-3538(98)00018-9
    [13]
    PEREIRA A B, DE MORAIS A B, MARQUES A T, et al. Mode II interlaminar fracture of carbon/epoxy multidirectional laminates[J]. Composites Science and Technology,2004,64(10):1653-1659.
    [14]
    PEREIRA A B, DE MORAIS A B. Mode II interlaminar fracture of glass/epoxy multidirectional laminates[J]. Composites Part A: Applied Science and Manufacturing,2004,35(2):265-272. DOI: 10.1016/j.compositesa.2003.09.028
    [15]
    CHAI H. Interlaminar shear fracture of laminated composites[J]. International Journal of Fracture,1990,43(2):117-131. DOI: 10.1007/BF00036181
    [16]
    HERRÁEZ M, PICHLER N, PAPPAS G A, et al. Experiments and numerical modelling on angle-ply laminates under remote mode II loading[J]. Composites Part A: Applied Science and Manufacturing,2020,134:105886. DOI: 10.1016/j.compositesa.2020.105886
    [17]
    POLAHA J J, DAVIDSON B D, HUDSON R C, et al. Effects of mode ratio, ply orientation and precracking on the delamination toughness of a laminated composite[J]. Journal of Reinforced Plastics and Composites,1996,15(2):141-173. DOI: 10.1177/073168449601500202
    [18]
    SALAMAT-TALAB M, SHOKRIEH M M, MOHAGHEGH M. On the R-curve and cohesive law of glass/epoxy end-notch flexure specimens with 0//θ interface fiber angles[J]. Polymer Testing,2020,93:106992.
    [19]
    CHOI N S, KINLOCH A J, WILLIAMS J G. Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II and mixed-mode I/II loading[J]. Journal of Composite Materials,1999,33(1):73-100. DOI: 10.1177/002199839903300105
    [20]
    TAO J, SUN C T. Influence of ply orientation on delamination in composite laminates[J]. Journal of Composite Materials,1998,32(21):1933-1947. DOI: 10.1177/002199839803202103
    [21]
    HWANG J H, KWON O, LEE C S, et al. Interlaminar fracture and low-velocity impact of carbon/epoxy composite materials[J]. Mechanics of Composite Materials,2000,36(2):117-130. DOI: 10.1007/BF02681828
    [22]
    中国航空工业总公司. 碳纤维复合材料层合板II型层间断裂韧性GIIC试验方法: HB 7403—1996[S]. 北京: 中国标准出版社, 1996

    China Aviation Industry Corporation. Test method for mode II interlaminar fracture toughness GIIC of carbon fiber composite laminates: HB 7403—1996[S]. Beijing: China Standards Press, 1996(in Chinese).
    [23]
    李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法现状[J]. 复合材料学报, 2021, 38(4):1076-1086.

    LI Xining, WANG Yueshun, ZHOU Xinfang. Status of numerical simulation methods for delamination damage of composite laminates[J]. Acta Materiae Compositae Sinica,2021,38(4):1076-1086(in Chinese).
    [24]
    ZHAO L, GONG Y, ZHANG J, et al. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements[J]. Composite Structures,2014,116:509-522. DOI: 10.1016/j.compstruct.2014.05.042
    [25]
    CAMANHO P P, DÁVILA C G, PINHO S T, et al. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear[J]. Composites Part A: Applied Science and Manufacturing,2006,37(2):165-176. DOI: 10.1016/j.compositesa.2005.04.023
  • Related Articles

    [1]LI Ke, WANG Shaohua, ZHENG Shuning, FAN Jiajun, ZHU Juntao. Numerical simulation and theoretical analysis of flexural strengthening of RC beams with high-strength steel strand mesh/ECC[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6077-6091. DOI: 10.13801/j.cnki.fhclxb.20240306.001
    [2]LI Ke, CHEN Xiang, FAN Jiajun, NIU Zili, ZHANG Zhe. Experiment on RC beams strengthened with high-strength steel strand meshes and ECC under secondary load[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4670-4681. DOI: 10.13801/j.cnki.fhclxb.20221102.003
    [3]ZHU Juntao, LIU Yawen, WANG Juan, LI Ke. Experimental on bond properties of grooved interface between high-strength steel wire mesh reinforced ECC and concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2913-2925. DOI: 10.13801/j.cnki.fhclxb.20220721.001
    [4]HUI Yingxin, WANG Wenwei, ZHU Zhongfeng. Cyclic compression behavior of FRP-ECC confined concrete cylinder[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5586-5598. DOI: 10.13801/j.cnki.fhclxb.20220516.004
    [5]LI Ke, ZHAO Jiali, LI Zhiqiang, ZHU Juntao. Experiment on non-damaged RC beams strengthened by high-strength steel wire strand meshes reinforced ECC in bending[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3428-3440. DOI: 10.13801/j.cnki.fhclxb.20210816.004
    [6]WANG Xinling, LI Yunpu, LIMIAO Haofu, FAN Jiajun. Compressive behavior of RC short columns strengthened with high-strength stainless steel wire strand mesh and ECC[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2308-2317. DOI: 10.13801/j.cnki.fhclxb.20210804.001
    [7]WANG Xinling, WEI Yaoxin, FAN Jianwei, ZHU Juntao. Experimental study on compressive performance of new composite material “concrete confined with high-strength steel stranded wire meshes/ECC”[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3904-3911. DOI: 10.13801/j.cnki.fhclxb.20201225.002
    [8]WANG Xinling, CHEN Yongjie, QIAN Wenwen, LI Ke, ZHU Juntao. Experiment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1292-1301. DOI: 10.13801/j.cnki.fhclxb.20200805.001
    [9]WANG Xinling, YANG Guanghua, QIAN Wenwen, LI Ke, ZHU Juntao. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3220-3228. DOI: 10.13801/j.cnki.fhclxb.20200428.002
    [10]ZHU Juntao, ZHAO Yalou, LI Yi, WANG Xinling. Experiment on bonding and anchoring performance between high-strength stainless steel wire mesh and engineered cementitious composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1731-1742. DOI: 10.13801/j.cnki.fhclxb.20191010.001
  • Cited by

    Periodical cited type(10)

    1. 徐建蓉,梅启林,姜端洋,蔡永祺,刘备,丁国民. Ca~(2+)辅助增强CNT/PEEK界面结合及其导电复合材料制备与性能. 复合材料学报. 2025(01): 283-298 . 本站查看
    2. 赵宏婷,王鹤峰,罗居杰,贾宜委,何艳骄,树学峰. N, S共掺杂碳/PVDF纳米复合膜的电磁屏蔽效能及其力学性能. 复合材料学报. 2025(02): 845-853 . 本站查看
    3. 朱再斌,凌辉,杨小平,李刚,王超. 碳纳米管膜层间增强增刚碳纤维增强树脂基复合材料的压缩强度与导热性能. 复合材料学报. 2024(03): 1235-1248 . 本站查看
    4. 施水娟,卞达,李佳红,王恺璇,徐鹏程,赵鹏,赵永武,陈义. 不同注射温度和热处理对聚醚醚酮/碳纤维复合材料摩擦磨损性能的影响. 塑料科技. 2024(04): 23-27 .
    5. 周杰,何相明,耿闻,李闯,李伟. 碳纳米管改性热固性树脂的研究进展. 广州化工. 2024(14): 11-13 .
    6. 王文波,宋彦平,李年,王振洋. 激光诱导石墨烯的纳米银颗粒原位修饰及其导电性能调控. 复合材料学报. 2024(08): 4124-4133 . 本站查看
    7. 李纪康,刘雁雁,王维超,郑振荣. 纳米材料在防护纺织品中的应用研究. 天津纺织科技. 2023(03): 1-5 .
    8. 李亚洲 ,杨强 ,彭瑞龙 ,王富 ,李涤尘 . 聚醚醚酮及其复合材料激光粉末床熔融成形的研究现状与展望. 精密成形工程. 2023(11): 46-60 .
    9. 任天翔,滕晓波,黄兴,马金星,赵德方,占海华. 聚醚醚酮的改性及应用研究进展. 塑料科技. 2022(09): 123-128 .
    10. 杨琴,汪莹,刘逸众. 热塑性树脂聚醚醚酮(PEEK)改性研究进展. 长沙航空职业技术学院学报. 2022(04): 33-37 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1193) PDF downloads (167) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return