Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
YANG Zhiyong, ZHANG Dong, GU Chunhui, et al. Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3029-3043. doi: 10.13801/j.cnki.fhclxb.20220325.004
Citation: YANG Zhiyong, ZHANG Dong, GU Chunhui, et al. Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3029-3043. doi: 10.13801/j.cnki.fhclxb.20220325.004

Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad

doi: 10.13801/j.cnki.fhclxb.20220325.004
Funds:  NIU Wen, YE Lei, LI Wenjie, et al.USA Defence Advaced Research projects Agency (DARPA) launches XS-1 aerospace vehicle program[J]Aerodynamic Missile Jounal, 2014, (11): 25-29(in Chinese).
  • Received Date: 2022-01-10
  • Accepted Date: 2022-03-19
  • Rev Recd Date: 2022-02-25
  • Available Online: 2022-03-29
  • Publish Date: 2022-07-30
  • Advanced resin matrix composite technology is an important basic support for the design and manufacture of lightweight structural system of aerospace shuttle vehicles. Firstly, the type and properties of advanced resin matrix composites used in foreign aerospace vehicles, the manufacturing technology, application and development of typical lightweight composite structure were described. And then the vehicular composite structures manufacture and application in major countries were introduced, including the composite application of “X Series” vehicles in USA and HOPE-X vehicles in Japan. Finally, the technical development trend of aircraft composite structure was introduced.

     

  • loading
  • [1]
    汤一华, 余梦伦, 杨勇, 等. 第二代可重复使用运载器及其再入制导技术[J]. 导弹与航天运载技术, 2010(1):26-31. doi: 10.3969/j.issn.1004-7182.2010.01.006

    TANG Yihua, YU Menglun, YANG Yong, et al. Second generation reusable launch vehicle and its reentry guidance technologies[J]. Missile and Space Vehicles,2010(1):26-31(in Chinese). doi: 10.3969/j.issn.1004-7182.2010.01.006
    [2]
    杨华保, 王建. 重复使用飞行器双层式结构连接研究[J]. 航空计算技术, 2013, 43(2):9-11. doi: 10.3969/j.issn.1671-654X.2013.02.003

    YANG Huabao, WANG Jian. Study on joint of reusable launch vehicle’s double-shell structure[J]. Aeronautical Computing Technique,2013,43(2):9-11(in Chinese). doi: 10.3969/j.issn.1671-654X.2013.02.003
    [3]
    邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING Liying, BAO Jianwen, LI Songming, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [4]
    杨智勇, 张博明, 解永杰, 等. 碳纤维复合材料空间反射镜制造技术研究进展[J]. 复合材料学报, 2017, 34(1):1-11.

    YANG Zhiyong, ZHANG Boming, XIE Yongjie, et al. Research progress on carbon fiber composite mirror technol-ogy[J]. Acta Materiae Compositae Sinica,2017,34(1):1-11(in Chinese).
    [5]
    高禹, 张志松, 王柏臣, 等. 空天飞行器用炭/双马复合材料环境损伤行为的研究现状[J]. 高分子材料科学与工程, 2013, 29(6):165-168.

    GAO Yu, ZHANG Zhisong, WANG Baicheng, et al. Investi-gation of the environmental damage behaviors for carbon/bismaleimide composite used in aerospace flying vehicle[J]. Polymer Material Science and Engineering,2013,29(6):165-168(in Chinese).
    [6]
    HAN J H, KIM C G. Low earth orbit space environment si-mulation and its effects on graphite/epoxy composites[J]. Composite Structures,2006,72(2):218-226. doi: 10.1016/j.compstruct.2004.11.007
    [7]
    HAROLD J K, DARRYL S. R. Graphite/epoxy composite adapters for the space shuttle/centaur vehicle[R]. NASA Technical Paper-3014, 1992.
    [8]
    美国CMH-17协调委员会. 复合材料手册: 聚合物基复合材料. 第2卷, 材料性能[M]. 汪海, 沈真, 等译. 上海: 上海交通大学出版社, 2016.

    CMH-17 Coordinating Committee. Composites material handbook: Polymer matrix matrix composites. Volume 2, Material properties[M]. WANG Hai, SHEN Zhen, et al. Translate. Shanghai: Shanghai Jiaotong University Press, 2016(in Chinese).
    [9]
    卢兆勇, 郑义, 隋阳, 等. 美国空天飞机计划验证飞行器结构、材料工艺及试验技术[J]. 航天制造技术, 2013(5):5-11.

    LU Zhaoyong, ZHENG Yi, SUI Yang, et al. Research of structure, material processing and test of the United States space airplane[J]. Aerospace Manufacturing Technology,2013(5):5-11(in Chinese).
    [10]
    赵渠森. 先进战斗机用复合材料树脂基体[J]. 高科技纤维与应用, 2000, 25(3):21-28.

    ZHAO Qusen. Composite resin matrix for advanced mili-tary aircraft[J]. Hi-Tech Fiber & Application,2000,25(3):21-28(in Chinese).
    [11]
    包建文. 高效低成本复合材料及其制造技术[M]. 北京: 国防工业出版社, 2012: 33-68.

    BAO Jianwen. High-efficient and law-cost manufacturing technology for advanced composites[M]. Beijing: National Defense Industry Press, 2012: 33-68(in Chinese).
    [12]
    THEODORE F. J, THOMAS S. G. High temperature poly-imide materials in extreme temperature environments[C]. 42nd AIAA/ASMBASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, 2001.
    [13]
    HATAKEYAMA S J, MCLVER K L. A high-temperature polymide composite for use on future reusable space vehicles[C]. AIAA Space 2000 Conference and Exposition, California, 2000.
    [14]
    HOU T H, JENSEN B J, HERGENROTHER P. M. Processing and Properties of IM7/PETI Composites[J]. Journal of Composite Materials,1996,30(1):109-122. doi: 10.1177/002199839603000107
    [15]
    JOHNSON W S, PAVLICK M M, OLIVER M S. Determination of interlaminar toughness of IM7/977-2 composites at temperature extremes and different thicknesses[R]. NASA Final Report, Ga Tech Project Number E-18-A19, 2005.
    [16]
    CHARLES E H, JAMES H S, MARK J. S et al. An assessment of the state-of-the-art in the design and manufacturing of large composite structures for aerospace vehicles[R]. NASA Technical Memorandum, TM-2001-210844, 2001.
    [17]
    TANG Y, XIEY, PAN W P, et al. Thermal properties of PETI-5/IM7[J]. Thermochimica Acta,2000,357-358:239-249. doi: 10.1016/S0040-6031(00)00394-4
    [18]
    PASRICHA A, TUTTLE M E, EMERY A F. Time-dependent response of IM7/5260 composites subjected to cyclic thermo-mechanical loading[J]. Composites Science and Technology,1995,55:49-56. doi: 10.1016/0266-3538(95)00095-X
    [19]
    DANIEL L, TUMINO G , HENRIKSEN T . Advanced compo-site technology in reusable launch vehicle (RLV)[C]. AIAA Space 2004 Conference and Exhibit, California, 2004.
    [20]
    CLINTON R G, MCMAHON W M, JOHNSTON N J, et al. Large composite structures processing technologies for reusable launch vehicles[C]. 4th Conference on Aerospace Materials, Processes, and Environmental Technology. Alabama, 2000.
    [21]
    COOK S A. The reusable launch vehicle technology program and the X-33 advanced technology demonstrator[R]. NASA Technical Memorandum, NASA-TM-111868, 1996.
    [22]
    DRAGONE T L. Structural innovations in design, manufacture, and testing on the X-34 reusable launch vehicle[C]. AIAA Space 2000 Conference and Exposition, California, 2000.
    [23]
    TENNEY D R, DAVIS J G, PIPES R B, et al. NASA composite materials development: lessons learned and future challenges[R]. NASA Report, LF99-9370, 2009.
    [24]
    彭小波. 可重复使用新型航天飞行器结构设计[M]. 北京: 中国宇航出版社, 2006.

    PENG Xiaobo. Structural design of new reusable space vehicles [M] Beijing: China Astronautic Publishing House, 2006(in Chinese).
    [25]
    STARNES J H, DEXTER H B, JOHNSTON N J. Composite structures and materials research at NASA langley research center[R]. The NATO Research and Technology Agency Applied Vehicle Technical Panel Specialists' Meeting on Low Cost Composite Structure, Loen, 2001.
    [26]
    PENDLETON E, BIGGS R, COCHRAN R, et al. Integrated composite structures demonstration for future space launch vehicle airframe applications[C]. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Hawaii, 2012.
    [27]
    TENNEY D R, DAVIS J G, JOHNSTON N J, et al. Structural framework for flight: NASA’s role in development of advanced composite materials for aircraft and space structures[R]. NASA Report, CR-2011-217076, 2011.
    [28]
    吴建刚, 王晓广, 栗琳. 美国空天飞行器技术发展分析[C]. 第五届中国航空学会青年科技论坛, 南昌, 2012.

    WU Jiangang, WANG Xiaoguang, LI Lin. Analysis of U. S. aerospace vehicle technology development[C]. 5th Youth Science and Technology Forum of CAAC, Nanchang, 2012(in Chinese).
    [29]
    LETCHWORTH G F. X-33 reusable launch vehicle demonstrator, spaceport and range[R]. AIAA Space 2011 Conference, California, 2011.
    [30]
    牛文, 李文杰, 叶蕾. 美国X-33空天飞行器项目回顾与总结[J]. 飞航导弹, 2014(7):13-17.

    NIU Wen, LI Wenjie, YE Lei. Review and summary of Ameri-can X-33 aerospace vehicle project[J]. Aerodynamic Missile Jounal,2014(7):13-17(in Chinese).
    [31]
    冷洪霞, 卢亮, 吕剑. 美国X系列技术验证飞行器的发展[C]//张传超. 2013中国无人机系统峰会论文集. 北京: 航空工业出版社, 2013: 56-63.

    LENG Hongxia, LU Liang, LV Jian. Development of X series technology verification aircraft in the United States[C]//ZHANG Chuanchao. Proceedings of 2013 China UAV System Summit. Beijing: Aviation Industry Press, 2013: 56-63(in Chinese).
    [32]
    FREEMAN D C, TALAY T A, AUSTIN R E. Reusable launch vehicle technology program[C]. 47th International Astronautical Congress, Beijing, 1996.
    [33]
    CLINTON R G, EFFINGER M, SMITH D, et al. NASA’s earth-to-orbit space transportation pragram: A material overview[C]. 23rd Annual Conference on Composites, Mater-ials, and Structure, Florida, 1999.
    [34]
    宋博, 李高峰. 美国X-37B轨道试验飞行器的发展及分析[J]. 飞航导弹, 2012(12): 3-9.

    SONG Bo, LI Gaofeng. Development and analysis of Ameri-can X-37B test vehicle[J]. Aerodynamic Missile Jounal, 2012(12): 3-9(in Chinese).
    [35]
    吴奇龙, 谈何易, 周斌. X-37B太空作战平台应用构想[J]. 飞航导弹, 2020(11): 26-30.

    WU Qilong, TAN Heyi, ZHOU bin. Application conception of X-37B space combat platform[J]. Aerodynamic Missile Jounal, 2020(11): 26-30(in Chinese).
    [36]
    TURNER S. Flight demonstrations of orbital space plane (OSP) technologies[C]. AIAA/ICAS International Air and Space Symposium and Exposition, Ohio, 2003.
    [37]
    PAEZ C A. The development of the X-37 re-entry vehicle[C]. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Florida, 2004.
    [38]
    ASADA S, NISHIWAKI K, NIITSU M, et al. Development of HOPE-X all-composite prototype ptructure[C]. AIAA/NAL-NASDA-ISAS 10th International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, 2001.
    [39]
    UZAWA K, NISHIWAKI K, NIITSU M, et al. Low cost fabircation of HOPE-X all-composite prototype ptructure[J]. Advanced Composite Materials,2005,14(3):289-304. doi: 10.1163/1568551054922593
    [40]
    MALUCCHI G, ZACCAGNINO E, DROCCOA, et al. The European re-entry program, from IXV to ISV-GNC/avionics development status and challenges[C]. AIAA Guidance, Navigation, and Control (GNC) Conference, Massachusetts, 2013.
    [41]
    URBINATI F, BECCHIO V, VITA G. Design, development and manufacturing of the IXV aeroshell panels[C]. 13th European Conference on Spacecraft Structures, Materials & Environmental Testing, Braunschweig, 2014.
    [42]
    康开华. 英国“云霄塔”空天飞机的最新进展[J]. 国际太空, 2014(7):42-50.

    KANG Kaihua. Latest development of British SKYLON vehicle[J]. Space International,2014(7):42-50(in Chinese).
    [43]
    牛文, 李文杰, 胡冬, 等. 2014 年国外高超声速技术发展动态回顾[J]. 飞航导弹, 2015(1):27-34.

    NIU Wen, LI Wenjie, HU Dong, et al. Review on the development of hypersonic technology abroad in 2014[J]. Aerodynamic Missile Jounal,2015(1):27-34(in Chinese).
    [44]
    牛文, 叶蕾, 李文杰等. 美国国防预先研究计划局启动XS-1空天飞行器项目[J]. 飞航导弹, 2014, 11:25-29.

    NIU Wen, YE Lei, LI Wenjie, et al. USA defence advaced research projects agency (DARPA) launches XS-1 aerospace vehicle program[J]. Aerodynamic Missile Jounal,2014,11:25-29(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views (1777) PDF downloads(376) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return